1887

Abstract

The family comprises prosthecate bacteria with a dimorphic cell cycle and also non-prosthecate bacteria. Cells of all described species divide by binary fission. Strain 0127_4 was isolated from forest soil in Baden Württemberg (Germany) and determined to be the first representative of the family which divided by budding. Cells of strain 0127_4 were Gram-negative, rod-shaped, prosthecate, motile by means of a polar flagellum, non-spore-forming and non-capsulated. The strain formed small white colonies and grew aerobically and chemo-organotrophically utilizing organic acids, amino acids and proteinaceous substrates. 16S rRNA gene sequence analysis indicated that this bacterium was related to TH1-2 and DRW22-8 with 91.3 and 89.7% sequence similarity, respectively. Four unidentified glycolipids were detected as the major polar lipids and, unlike all described members of the family , phosphatidylglycerol was absent. The major fatty acids were summed feature 8 (Cω7/Cω6), summed feature 9 (iso-Cω9/C 10-methyl), C and summed feature 3 (C 6/C 7). The major respiratory quinone was Q-10. The G+C content of the genomic DNA was 63.5 %. Based on the present taxonomic characterization, strain 0127_4 represents a novel species of a new genus, gen. nov., sp. nov. The type strain of is 0127_4 (=DSM 104635=CECT 9243).

Funding
This study was supported by the:
  • Deutsche Forschungsgemeinschaft (Award OV 20/21-1)
    • Principle Award Recipient: Jörg Overmann
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004367
2020-08-07
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/9/4966.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004367&mimeType=html&fmt=ahah

References

  1. Skerker JM, Laub MT. Cell-cycle progression and the generation of asymmetry in Caulobacter crescentus . Nat Rev Microbiol 2004; 2:325–337 [View Article]
    [Google Scholar]
  2. Goley ED, Iniesta AA, Shapiro L. Cell cycle regulation in Caulobacter: location, location, location. J Cell Sci 2007; 120:3501–3507 [View Article]
    [Google Scholar]
  3. Henrici AT, Johnson DE. Studies of Freshwater Bacteria: II. Stalked Bacteria, a New Order of Schizomycetes . J Bacteriol 1935; 30:61–93
    [Google Scholar]
  4. Cai H, Shi Y, Wang Y, Cui H, Jiang H. Aquidulcibacter paucihalophilus gen. nov., sp. nov., a novel member of family Caulobacteraceae isolated from cyanobacterial aggregates in a eutrophic lake. Antonie van Leeuwenhoek 2017; 110:1169–1177 [View Article]
    [Google Scholar]
  5. Pate JL, Porter JS, Jordan TL. Asticcacaulis biprosthecum sp.nov. Life cycle, morphology and cultural characteristics. Antonie Van Leeuwenhoek 1973; 39:569–583 [View Article]
    [Google Scholar]
  6. Zhu L, Long M, Si M, Wei L, Li C et al. Asticcacaulis endophyticus sp. nov., a prosthecate bacterium isolated from the root of Geum aleppicum . Int J Syst Evol Microbiol 2014; 64:3964–3969 [View Article]
    [Google Scholar]
  7. Liu Z-P, Wang B-J, Liu S-J, Liu Y-H. Asticcacaulis taihuensis sp. nov., a novel stalked bacterium isolated from Taihu Lake, China. Int J Syst Evol Microbiol 2005; 55:1239–1242 [View Article]
    [Google Scholar]
  8. Kim S, Gong G, Park TH, Um Y. Asticcacaulis solisilvae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2013; 63:3829–3834 [View Article]
    [Google Scholar]
  9. Vasilyeva LV, Omelchenko MV, Berestovskaya YY, Lysenko AM, Abraham W-R et al. Asticcacaulis benevestitus sp. nov., a psychrotolerant, dimorphic, prosthecate bacterium from tundra wetland soil. Int J Syst Evol Microbiol 2006; 56:2083–2088 [View Article]
    [Google Scholar]
  10. Poindexter JS. Biological properties and classification of the Caulobacter GROUP1. Bacteriol Rev 1964; 28:231–295 [View Article]
    [Google Scholar]
  11. Segers P, Vancanneyt M, Pot B, Torck U, Hoste B et al. Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Busing, Doll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. Int J Syst Bacteriol 1994; 44:499–510 [View Article]
    [Google Scholar]
  12. Abraham W-R, Strömpl C, Meyer H, Lindholst S, Moore ERB et al. Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter . Int J Syst Evol Microbiol 1999; 49:1053–1073 [View Article]
    [Google Scholar]
  13. Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H et al. Sphingomonas yabuuchiae sp. nov. and Brevundimonas nasdae sp. nov., isolated from the Russian space laboratory Mir. Int J Syst Evol Microbiol 2004; 54:819–825 [View Article]
    [Google Scholar]
  14. Fritz I, Strömpl C, Nikitin DI, Lysenko AM, Abraham W-R. Brevundimonas mediterranea sp. nov., a non-stalked species from the Mediterranean Sea. Int J Syst Evol Microbiol 2005; 55:479–486 [View Article]
    [Google Scholar]
  15. Yoon J-H, Kang S-J, Lee J-S, Oh T-K. Brevundimonas terrae sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol 2006; 56:2915–2919 [View Article]
    [Google Scholar]
  16. Yoon J-H, Kang S-J, Oh HW, Lee J-S, Oh T-K. Brevundimonas kwangchunensis sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol 2006; 56:613–617 [View Article]
    [Google Scholar]
  17. Ryu SH, Park M, Lee JR, Yun P-Y, Jeon CO. Brevundimonas aveniformis sp. nov., a stalked species isolated from activated sludge. Int J Syst Evol Microbiol 2007; 57:1561–1565 [View Article]
    [Google Scholar]
  18. Yoon J-H, Kang S-J, Lee J-S, Oh HW, Oh T-K. Brevundimonas lenta sp. nov., isolated from soil. Int J Syst Evol Microbiol 2007; 57:2236–2240 [View Article][PubMed]
    [Google Scholar]
  19. Abraham W-R, Macedo AJ, Lunsdorf H, Fischer R, Pawelczyk S et al. Phylogeny by a polyphasic approach of the order Caulobacterales, proposal of Caulobacter mirabilis sp. nov., Phenylobacterium haematophilum sp. nov. and Phenylobacterium conjunctum sp. nov., and emendation of the genus Phenylobacterium . Int J Syst Evol Microbiol 2008; 58:1939–1949 [View Article]
    [Google Scholar]
  20. Kang S-J, Choi N-S, Choi JH, Lee J-S, Yoon J-H et al. Brevundimonas naejangsanensis sp. nov., a proteolytic bacterium isolated from soil, and reclassification of Mycoplana bullata into the genus Brevundimonas as Brevundimonas bullata comb. nov. Int J Syst Evol Microbiol 2009; 59:3155–3160 [View Article]
    [Google Scholar]
  21. Choi J-H, Kim M-S, Roh SW, Bae J-W. Brevundimonas basaltis sp. nov., isolated from black sand. Int J Syst Evol Microbiol 2010; 60:1488–1492 [View Article]
    [Google Scholar]
  22. Estrela AB, Abraham W-R. Brevundimonas vancanneytii sp. nov., isolated from blood of a patient with endocarditis. Int J Syst Evol Microbiol 2010; 60:2129–2134 [View Article]
    [Google Scholar]
  23. Abraham W-R, Estrela AB, Nikitin DI, Smit J, Vancanneyt M. Brevundimonas halotolerans sp. nov., Brevundimonas poindexterae sp. nov. and Brevundimonas staleyi sp. nov., prosthecate bacteria from aquatic habitats. Int J Syst Evol Microbiol 2010; 60:1837–1843 [View Article]
    [Google Scholar]
  24. Scotta C, Bennasar A, Moore ERB, Lalucat J, Gomila M. Taxonomic characterisation of ceftazidime-resistant Brevundimonas isolates and description of Brevundimonas faecalis sp. nov. Syst Appl Microbiol 2011; 34:408–413 [View Article]
    [Google Scholar]
  25. Wang J, Zhang J, Ding K, Xin Y, Pang H. Brevundimonas viscosa sp. nov., isolated from saline soil. Int J Syst Evol Microbiol 2012; 62:2475–2479 [View Article]
    [Google Scholar]
  26. Tsubouchi T, Shimane Y, Usui K, Shimamura S, Mori K et al. Brevundimonas abyssalis sp. nov., a dimorphic prosthecate bacterium isolated from deep-subsea floor sediment. Int J Syst Evol Microbiol 2013; 63:1987–1994 [View Article]
    [Google Scholar]
  27. Tsubouchi T, Koyama S, Mori K, Shimane Y, Usui K et al. Brevundimonas denitrificans sp. nov., a denitrifying bacterium isolated from deep subseafloor sediment. Int J Syst Evol Microbiol 2014; 64:3709–3716 [View Article]
    [Google Scholar]
  28. Pham VHT, Jeong S, Chung S, Kim J. Brevundimonas albigilva sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016; 66:1144–1150 [View Article]
    [Google Scholar]
  29. Tóth E, Szuróczki S, Kéki Z, Kosztik J, Makk J et al. Brevundimonas balnearis sp. nov., isolated from the well water of a thermal bath. Int J Syst Evol Microbiol 2017; 67:1033–1038 [View Article]
    [Google Scholar]
  30. Menéndez E, Pérez-Yepes J, Carro L, Fernández-Pascual M, Ramírez-Bahena M-H et al. Brevundimonas canariensis sp. nov., isolated from roots of Triticum aestivum. Int J Syst Evol Microbiol 2017; 67:969–973 [View Article]
    [Google Scholar]
  31. Dahal RH, Kim J. Brevundimonas humi sp. nov., an alphaproteobacterium isolated from forest soil. Int J Syst Evol Microbiol 2018; 68:709–714 [View Article]
    [Google Scholar]
  32. Chaudhary DK, Kim J. Brevundimonas mongoliensis sp. nov., a novel psychrotolerant bacterium isolated from oil-contaminated soil. Curr Microbiol 2018; 75:1530–1536 [View Article]
    [Google Scholar]
  33. J-H Q, Y-H F, Li X-D LH-F, Tian H-L. Brevundimonas lutea sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 2019; 69:1417–1422
    [Google Scholar]
  34. W-T I. Caulobacter ginsengisoli sp. nov., a novel stalked bacterium isolated from ginseng cultivating soil. J Microbiol Biotechnol 2010; 20:11–16
    [Google Scholar]
  35. Jin L, Lee H-G, Kim H-S, Ahn C-Y, Oh H-M. Caulobacter daechungensis sp. nov., a stalked bacterium isolated from a eutrophic reservoir. Int J Syst Evol Microbiol 2013; 63:2559–2564 [View Article][PubMed]
    [Google Scholar]
  36. Jin L, La H-J, Lee H-G, Lee JJ, Lee S et al. Caulobacter profunda sp. nov., isolated from deep freshwater sediment. Int J Syst Evol Microbiol 2014; 64:762–767 [View Article][PubMed]
    [Google Scholar]
  37. Wei J-C, Han G-M, Sun L-N, Tang X-Y, Cao Y-Y et al. Caulobacter flavus sp. nov., a stalked bacterium isolated from rhizosphere soil. Int J Syst Evol Microbiol 2015; 65:4374–4380
    [Google Scholar]
  38. Moya G, Yan Z-F, Won K, Yang J-E, Wang Q-J et al. Caulobacter hibisci sp. nov., isolated from rhizosphere of Hibiscus syriacus L. (Mugunghwa flower). Int J Syst Evol Microbiol 2017; 67:3167–3173 [View Article]
    [Google Scholar]
  39. Sun L-N, Yang E-D, Hou X-T, Wei J-C, Yuan Z-X et al. Caulobacter rhizosphaerae sp. nov., a stalked bacterium isolated from rhizosphere soil. Int J Syst Evol Microbiol 2017; 67:1771–1776 [View Article]
    [Google Scholar]
  40. Gao J-lian, Sun P, Sun X-hong, Tong S, Yan H et al. Caulobacter zeae sp. nov. and Caulobacter radicis sp. nov., novel endophytic bacteria isolated from maize root (Zea mays L.). Syst Appl Microbiol 2018; 41:604–610 [View Article]
    [Google Scholar]
  41. Lingens F, Blecher R, Blecher H, Blobel F, Eberspacher J et al. Phenylobacterium immobile gen. nov., sp. nov., a Gram-negative bacterium that degrades the herbicide chloridazon. Int J Syst Bacteriol 1985; 35:26–39 [View Article]
    [Google Scholar]
  42. Kanso S, Patel BKC. Phenylobacterium lituiforme sp. nov., a moderately thermophilic bacterium from a subsurface aquifer, and emended description of the genus Phenylobacterium . Int J Syst Evol Microbiol 2004; 54:2141–2146 [View Article]
    [Google Scholar]
  43. Tiago I, Mendes V, Pires C, Morais PV, Veríssimo A. Phenylobacterium falsum sp. nov., an Alphaproteobacterium isolated from a nonsaline alkaline groundwater, and emended description of the genus Phenylobacterium . Syst Appl Microbiol 2005; 28:295–302 [View Article]
    [Google Scholar]
  44. Aslam Z, Im W-T, Ten LN, Lee S-T. Phenylobacterium koreense sp. nov., isolated from South Korea. Int J Syst Evol Microbiol 2005; 55:2001–2005 [View Article]
    [Google Scholar]
  45. Weon H-Y, Kim B-Y, Kwon S-W, Go S-J, Koo B-S et al. Phenylobacterium composti sp. nov., isolated from cotton waste compost in Korea. Int J Syst Evol Microbiol 2008; 58:2301–2304 [View Article]
    [Google Scholar]
  46. Y-S O, Roh D-H. Phenylobacterium muchangponense sp. nov., isolated from beach soil, and emended description of the genus Phenylobacterium . Int J Syst Evol Microbiol 2012; 62:977–983
    [Google Scholar]
  47. Chu C, Yuan C, Liu X, Yao L, Zhu J et al. Phenylobacterium kunshanense sp. nov., isolated from the sludge of a pesticide manufacturing factory. Int J Syst Evol Microbiol 2015; 65:325–330 [View Article]
    [Google Scholar]
  48. JH J, Choi G-M, Lee S-Y, W-T I. Phenylobacterium aquaticum sp. nov., isolated from the reservoir of a water purifier. Int J Syst Evol Microbiol 2016; 66:3519–3523
    [Google Scholar]
  49. Farh ME-A, Kim Y-J, Singh P, Hoang V-A, Yang D-C. Phenylobacterium panacis sp. nov., isolated from the rhizosphere of rusty mountain ginseng. Int J Syst Evol Microbiol 2016; 66:2691–2696 [View Article]
    [Google Scholar]
  50. Khan IU, Hussain F, Habib N, Wadaan MAM, Ahmed I et al. Phenylobacterium deserti sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2017; 67:4722–4727 [View Article]
    [Google Scholar]
  51. Choi G-M, Lee S-youl, Choi KD, Im W-T, Lee S, W-T I. Phenylobacterium hankyongense sp. nov., isolated from ginseng field soil. Int J Syst Evol Microbiol 2018; 68:125–130 [View Article]
    [Google Scholar]
  52. Baek C, Shin S-K, Yi H. Phenylobacterium parvum sp. nov., isolated from lake water. Int J Syst Evol Microbiol 2019; 69:1169–1172 [View Article]
    [Google Scholar]
  53. Li X, Yu Y, Choi L, Song Y, Wu M et al. Phenylobacterium soli sp. nov., isolated from arsenic and cadmium contaminated farmland soil. Int J Syst Evol Microbiol 2019; 69:1398–1403 [View Article]
    [Google Scholar]
  54. Khan IU, Habib N, Xiao M, Huang X, Khan NU et al. Phenylobacterium terrae sp. nov., isolated from a soil sample of Khyber-Pakhtun-Khwa, Pakistan. Antonie van Leeuwenhoek 2018; 111:1767–1775 [View Article]
    [Google Scholar]
  55. Hong J-K, Kim H-J, Cho J-C. Novel PCR primers for the archaeal phylum Thaumarchaeota designed based on the comparative analysis of 16S rRNA gene sequences. PLoS One 2014; 9:e96197 [View Article]
    [Google Scholar]
  56. Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A et al. Implementing large-scale and long-term functional biodiversity research: the biodiversity Exploratories. Basic Appl Ecol 2010; 11:473–485 [View Article]
    [Google Scholar]
  57. Pascual J, Wüst PK, Geppert A, Foesel BU, Huber KJ et al. Novel isolates double the number of chemotrophic species and allow the first description of higher taxa in Acidobacteria subdivision 4. Syst Appl Microbiol 2015; 38:534–544 [View Article]
    [Google Scholar]
  58. Angle JS, McGrath SP, Chaney RL. New culture medium containing ionic concentrations of nutrients similar to concentrations found in the soil solution. Appl Environ Microbiol 1991; 57:3674–3676 [View Article]
    [Google Scholar]
  59. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS. Methanogens: reevaluation of a unique biological group. Microbiol Rev 1979; 43:260–296 [View Article]
    [Google Scholar]
  60. Tschech A, Pfennig N. Growth yield increase linked to caffeate reduction in Acetobacterium woodii . Arch Microbiol 1984; 137:163–167 [View Article]
    [Google Scholar]
  61. Lunau M, Lemke A, Walther K, Martens-Habbena W, Simon M. An improved method for counting bacteria from sediments and turbid environments by epifluorescence microscopy. Environ Microbiol 2005; 7:961–968 [View Article]
    [Google Scholar]
  62. Camarinha-Silva A, Jáuregui R, Chaves-Moreno D, Oxley APA, Schaumburg F et al. Comparing the anterior NarE bacterial community of two discrete human populations using Illumina amplicon sequencing. Environ Microbiol 2014; 16:2939–2952 [View Article]
    [Google Scholar]
  63. Lane D. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics 1991 pp 115–175
    [Google Scholar]
  64. Etchebehere C, Tiedje J. Presence of two different active nirS nitrite reductase genes in a denitrifying Thauera sp. from a high-nitrate-removal-rate reactor. Appl Environ Microbiol 2005; 71:5642–5645 [View Article]
    [Google Scholar]
  65. Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc 2010; 2010:pdb.prot5448 [View Article]
    [Google Scholar]
  66. Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R. Error-Correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 2008; 5:235–237 [View Article]
    [Google Scholar]
  67. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007; 73:5261–5267 [View Article]
    [Google Scholar]
  68. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  69. Foesel BU, Rohde M, Overmann J. Blastocatella fastidiosa gen. nov., sp. nov., isolated from semiarid savanna soil – the first described species of Acidobacteria subdivision 4. Syst Appl Microbiol 2013; 36:82–89 [View Article]
    [Google Scholar]
  70. Huber KJ, Geppert AM, Wanner G, Fösel BU, Wüst PK et al. The first representative of the globally widespread subdivision 6 Acidobacteria, Vicinamibacter silvestris gen. nov., sp. nov., isolated from subtropical savannah soil. Int J Syst Evol Microbiol 2016; 66:2971–2979 [View Article]
    [Google Scholar]
  71. Wüst PK, Foesel BU, Geppert A, Huber KJ, Luckner M et al. Brevitalea aridisoli, B. deliciosa and Arenimicrobium luteum, three novel species of Acidobacteria subdivision 4 (class Blastocatellia) isolated from savanna soil and description of the novel family Pyrinomonadaceae . Int J Syst Evol Microbiol 2016; 66:3355–3366 [View Article]
    [Google Scholar]
  72. Moore RL, Weiner RM, Gebers R. Notes: genus Hyphomonas Pongratz 1957 nom. rev. emend., Hyphomonas polymorpha Pongratz 1957 nom. rev. emend., and Hyphomonas neptunium (Leifson 1964) comb. nov. emend. (Hyphomicrobium neptunium). Int J Syst Bacteriol 1984; 34:71–73 [View Article]
    [Google Scholar]
  73. Gerhardt P. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  74. Bast E. Mikrobiologische Methoden, 3rd ed. Springer Spektrum; 2014
    [Google Scholar]
  75. Cowan ST, Barrow GI, Steel KJ, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge University Press; 1993
    [Google Scholar]
  76. Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. Methods for General and Molecular Microbiology, 3rd ed. American Society of Microbiology; 2007
    [Google Scholar]
  77. Vieira S, Luckner M, Wanner G, Overmann J. Luteitalea pratensis gen. nov., sp. nov. a new member of subdivision 6 Acidobacteria isolated from temperate grassland soil. Int J Syst Evol Microbiol 2017; 67:1408–1414 [View Article]
    [Google Scholar]
  78. Huber KJ, Wüst PK, Rohde M, Overmann J, Foesel BU. Aridibacter famidurans gen. nov., sp. nov. and Aridibacter kavangonensis sp. nov., two novel members of subdivision 4 of the Acidobacteria isolated from semiarid savannah soil. Int J Syst Evol Microbiol 2014; 64:1866–1875 [View Article]
    [Google Scholar]
  79. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [View Article]
    [Google Scholar]
  80. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  81. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. Stat 20011–6
    [Google Scholar]
  82. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article]
    [Google Scholar]
  83. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic Characterization and the Principles of Comparative Systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 1978 pp 330–393
    [Google Scholar]
  84. Turner S, Pryer KM, Miao VPW, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 1999; 46:327–338 [View Article]
    [Google Scholar]
  85. Davis KER, Joseph SJ, Janssen PH. Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 2005; 71:826–834 [View Article]
    [Google Scholar]
  86. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  87. Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 2010; 26:589–595 [View Article]
    [Google Scholar]
  88. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article]
    [Google Scholar]
  89. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [View Article]
    [Google Scholar]
  90. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article]
    [Google Scholar]
  91. S-I N, Kim YO, Yoon S-H, Ha S, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285
    [Google Scholar]
  92. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004367
Loading
/content/journal/ijsem/10.1099/ijsem.0.004367
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error