1887

Abstract

A bacterial strain, BIT-B35, was isolated from the gut of plastic-eating larvae of the Coleoptera insect . Its taxonomic position was determined by using a polyphasic approach. Cells were white-pigmented, Gram-stain-negative, motile short rods with terminal flagella. The 16S rRNA gene sequence (1411 bp) of strain BIT-B35 showed highest similarity (98.1%) to ATCC 35469 and LMG 5519. The results of phylogenetic analyses, based on the 16S rRNA gene, concatenated sequences of seven housekeeping genes (, , , , , and ) and genome sequences, placed strain BIT-B35 in a separate lineage among the family of . The major fatty acids were C, C cyclo and C cyclo 8. The genomic DNA G+C content of strain BIT-B35 was 57.1 mol%. The chemotaxonomic data plus results of physiological and biochemical tests also distinguished strain BIT-B35 from members of other genera within the family . Therefore, strain BIT-B35 is considered to represent a novel species of a novel genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain is BIT-B35 (=CGMCC 1.17042=KCTC 72448).

Funding
This study was supported by the:
  • Yu Yang , Young Elite Scientist Sponsorship Program of the China Association of Science and Technology , (Award 2017QNRC001)
  • Yu Yang , National Natural Science Foundation of China , (Award 51603004)
  • Yu Yang , National Natural Science Foundation of China , (Award 31961133015)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004364
2020-08-03
2020-09-28
Loading full text...

Full text loading...

References

  1. Adeolu M, Alnajar S, Naushad S, S Gupta R. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:5575–5599 [CrossRef][PubMed]
    [Google Scholar]
  2. Alnajar S, Gupta RS. Phylogenomics and comparative genomic studies delineate six main clades within the family Enterobacteriaceae and support the reclassification of several polyphyletic members of the family. Infect Genet Evol 2017; 54:108–127 [CrossRef][PubMed]
    [Google Scholar]
  3. Wu W, Wei L, Feng Y, Kang M, Zong Z. Enterobacter huaxiensis sp. nov. and Enterobacter chuandaensis sp. nov., recovered from human blood. Int J Syst Evol Microbiol 2019; 69:708–714 [CrossRef][PubMed]
    [Google Scholar]
  4. Stephan R, Van Trappen S, Cleenwerck I, Vancanneyt M, De Vos P et al. Enterobacter turicensis sp. nov. and Enterobacter helveticus sp. nov., isolated from fruit powder. Int J Syst Evol Microbiol 2007; 57:820–826 [CrossRef][PubMed]
    [Google Scholar]
  5. Halpern M, Fridman S, Atamna-Ismaeel N, Izhaki I. Rosenbergiella nectarea gen. nov., sp. nov., in the family Enterobacteriaceae, isolated from floral nectar. Int J Syst Evol Microbiol 2013; 63:4259–4265 [CrossRef][PubMed]
    [Google Scholar]
  6. Pillonetto M, Arend LN, Faoro H, D'Espindula HRS, Blom J et al. Emended description of the genus Phytobacter, its type species Phytobacter diazotrophicus (Zhang 2008) and description of Phytobacter ursingii sp. nov. Int J Syst Evol Microbiol 2018; 68:176–184 [CrossRef][PubMed]
    [Google Scholar]
  7. Yang Y, Wang J, Xia M. Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Sci Total Environ 2020; 708:135233 [CrossRef][PubMed]
    [Google Scholar]
  8. Ru J, Huo Y, Yang Y. Microbial degradation and valorization of plastic wastes. Front Microbiol 2020; 11:422 [CrossRef]
    [Google Scholar]
  9. Xia M, Wang J, Huo Y-X, Yang Y. Mixta tenebrionis sp. nov., isolated from the gut of the plastic-eating mealworm Tenebrio molitor L. Int J Syst Evol Microbiol 2020; 70:790–796 [CrossRef][PubMed]
    [Google Scholar]
  10. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  11. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  12. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  14. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  15. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [CrossRef][PubMed]
    [Google Scholar]
  16. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 2007; 23:673–679 [CrossRef][PubMed]
    [Google Scholar]
  17. Besemer J, Borodovsky M. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 2005; 33:W451–W454 [CrossRef][PubMed]
    [Google Scholar]
  18. Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst Appl Microbiol 2013; 36:309–319 [CrossRef][PubMed]
    [Google Scholar]
  19. Clermont D, Motreff L, Passet V, Fernandez J-C, Bizet C et al. Multilocus sequence analysis of the genus Citrobacter and description of Citrobacter pasteurii sp. nov. Int J Syst Evol Microbiol 2015; 65:1486–1490 [CrossRef][PubMed]
    [Google Scholar]
  20. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [CrossRef][PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  22. Yoon S-H, Ha S-min, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef]
    [Google Scholar]
  23. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  24. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  25. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [CrossRef][PubMed]
    [Google Scholar]
  26. Farris JS. Estimating phylogenetic trees from distance matrices. Am Nat 1972; 106:645–668 [CrossRef]
    [Google Scholar]
  27. Le Minor L, Popoff MY. Designation of Salmonella enterica sp. nov., nom. rev., as the type and only species of the genus Salmonella: request for an opinion. Int J Syst Bacteriol 1987; 37:465–468 [CrossRef]
    [Google Scholar]
  28. Chou J-H, Chen W-M, Arun AB, Young C-C. Trabulsiella odontotermitis sp. nov., isolated from the gut of the termite Odontotermes formosanus Shiraki. Int J Syst Evol Microbiol 2007; 57:696–700 [CrossRef][PubMed]
    [Google Scholar]
  29. Inoue K, Sugiyama K, Kosako Y, Sakazaki R, Yamai S. Enterobacter cowaniisp. nov., a new species of the family Enterobacteriaceae. Curr Microbiol 2000; 41:417–420 [CrossRef][PubMed]
    [Google Scholar]
  30. Hoffmann H, Stindl S, Ludwig W, Stumpf A, Mehlen A et al. Enterobacter hormaechei subsp. oharae subsp. nov., E. hormaechei subsp. hormaechei comb. nov., and E. hormaechei subsp. steigerwaltii subsp. nov., three new subspecies of clinical importance. J Clin Microbiol 2005; 43:3297–3303
    [Google Scholar]
  31. Ko KS, Choi J-Y, Kim J, Park MK. Citrobacter bitternis sp. nov. isolated from bitterns. Curr Microbiol 2015; 70:894–897 [CrossRef][PubMed]
    [Google Scholar]
  32. Wang C, Wu W, Wei L, Feng Y, Kang M et al. Kosakonia quasisacchari sp. nov. recovered from human wound secretion in China. Int J Syst Evol Microbiol 2019; 69:3155–3160 [CrossRef][PubMed]
    [Google Scholar]
  33. Wang C, Wu W, Wei L, Feng Y, Kang M et al. Enterobacter wuhouensis sp. nov. and Enterobacter quasihormaechei sp. nov. recovered from human sputum. Int J Syst Evol Microbiol 2020; 70:874–881 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004364
Loading
/content/journal/ijsem/10.1099/ijsem.0.004364
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error