1887

Abstract

A pink-pigmented, non-motile, Gram-stain-negative, rod-shaped bacterium, designated RP-2-7, was obtained from soil sampled at the Arctic station, Spitsbergen, Svalbard, Norway. Cells were strictly aerobic, psychrotolerant, grew optimally at 15–20 °C and hydrolysed CM-cellulose. Phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain RP-2-7 formed a lineage within the family and clustered with members of the genus . Its closest relative was KJ035 (97.6 % sequence similarity). The sequence similarities to other strains were ≤96.9 %. The principal respiratory quinone was MK-7 and the major polar lipids were phosphatidylethanolamine and an unidentified aminophospholipid. The predominant cellular fatty acids were summed feature 3 (C 7 and/or C 6), anteiso-C, iso-C, C 5 and summed featured 4 (iso-C I and/or anteiso-C B). The DNA G+C content was 62.8 mol%. In addition, the average nucleotide identity and DNA–DNA hybridization relatedness values between strain RP-2-7 and closely related strains were lower than species demarcation thresholds. Based on the resuls of genomic, chemotaxonomic, phenotypic and phylogenetic analyses, strain RP-2-7 represents novel species in the genus , for which the name sp. nov. is proposed. The type strain is RP-2-7 (=KACC 21670=NBRC 114391).

Funding
This study was supported by the:
  • National Research Foundation (KR) (Award 2019R1F1A1058501)
    • Principle Award Recipient: Jaisoo Kim
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004356
2020-07-30
2021-08-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/9/4890.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004356&mimeType=html&fmt=ahah

References

  1. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B et al. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antartica soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 1998; 21:374–383 [View Article][PubMed]
    [Google Scholar]
  2. Buczolits S, Denner EBM, Kämpfer P, Busse H-J. Proposal of Hymenobacter norwichensis sp. nov., classification of 'Taxeobacter ocellatus', 'Taxeobacter gelupurpurascens' and 'Taxeobacter chitinovorans' as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 2006; 56:2071–2078 [View Article][PubMed]
    [Google Scholar]
  3. Han L, Wu S-J, Qin C-Y, Zhu Y-H, Lu Z-Q et al. Hymenobacter qilianensis sp. nov., isolated from a subsurface sandstone sediment in the permafrost region of Qilian Mountains, China and emended description of the genus Hymenobacter . Antonie van Leeuwenhoek 2014; 105:971–978 [View Article][PubMed]
    [Google Scholar]
  4. Chhetri G, Kim J, Kim I, Kim H, Seo T. Hymenobacter setariae sp. nov., isolated from the ubiquitous weedy grass Setaria viridis . Int J Syst Evol Microbiol 2020; 70:3724–3730 [View Article][PubMed]
    [Google Scholar]
  5. Kang H, Kim H, Joung Y, Kim K-J, Joh K. Hymenobacter marinus sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2016; 66:2212–2217 [View Article][PubMed]
    [Google Scholar]
  6. Sheu S-Y, Hsieh T-Y, Kwon S-W, Chen W-M. Hymenobacter rivuli sp. nov., isolated from a freshwater creek. Int J Syst Evol Microbiol 2018; 68:1220–1226 [View Article][PubMed]
    [Google Scholar]
  7. Chung AP, Lopes A, Nobre MF, Morais PV. Hymenobacter perfusus sp. nov., Hymenobacter flocculans sp. nov. and Hymenobacter metalli sp. nov. three new species isolated from an uranium mine waste water treatment system. Syst Appl Microbiol 2010; 33:436–443 [View Article][PubMed]
    [Google Scholar]
  8. Lee J-J, Lee Y-H, Park S-J, Lee S-Y, Park S et al. Hymenobacter seoulensis sp. nov., isolated from river water. Int J Syst Evol Microbiol 2017; 67:596–601 [View Article][PubMed]
    [Google Scholar]
  9. Kang H, Cha I, Kim H, Joh K. Hymenobacter aquatilis sp. nov., isolated from a mesotrophic artificial lake. Int J Syst Evol Microbiol 2018; 68:2036–2041 [View Article][PubMed]
    [Google Scholar]
  10. Wang C, Liu B-T, Zhang R, Liu C-L, Du Z-J. Hymenobacter sediminis sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 2020; 70:1895–1902 [View Article][PubMed]
    [Google Scholar]
  11. Holm Hansen AC, Paulino-Lima IG, Fujishima K, Rothschild LJ, Jensen PR. Draft genome sequence of Hymenobacter sp. strain AT01-02, isolated from a surface soil sample in the Atacama desert, Chile. Genome Announc 2016; 4:e01701–01715 [View Article][PubMed]
    [Google Scholar]
  12. Dahal RH, Kim J. Glaciihabitans arcticus sp. nov., a psychrotolerant bacterium isolated from Arctic soil. Int J Syst Evol Microbiol 2019; 69:2492–2497 [View Article][PubMed]
    [Google Scholar]
  13. Dahal RH, Chaudhary DK, Kim J. Pinisolibacter ravus gen. nov., sp. nov., isolated from pine forest soil and allocation of the genera Ancalomicrobium and Pinisolibacter to the family Ancalomicrobiaceae fam. nov., and emendation of the genus Ancalomicrobium Staley 1968. Int J Syst Evol Microbiol 2018; 68:1955–1962 [View Article][PubMed]
    [Google Scholar]
  14. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008; 74:2461–2470 [View Article][PubMed]
    [Google Scholar]
  15. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  16. Pruesse E, Peplies J, Glöckner FO. Sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  18. Doetsch RN et al. Determinative Methods of Light Microscopy. In Gerdhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Bacteriology Washington, DC, USA: American Society for Microbiology; 1981 pp 21–33
    [Google Scholar]
  19. Breznak JA, Costilow RN et al. Physicochemical factors in growth. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Bacteriology Washinton, DC, USA: American Society of Microbiology; 2007 pp 309–329
    [Google Scholar]
  20. Dahal RH, Kim J. Altererythrobacter fulvus sp. nov., a novel alkalitolerant alphaproteobacterium isolated from forest soil. Int J Syst Evol Microbiol 2018; 68:1502–1508 [View Article][PubMed]
    [Google Scholar]
  21. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC USA: American Society for Microbiology,; 1994 pp 607–654
    [Google Scholar]
  22. Dahal RH, Kim J. Dyadobacter flavus sp. nov. and Dyadobacter terricola sp. nov., two novel members of the family Cytophagaceae isolated from forest soil. Arch Microbiol 2018; 200:1067–1074 [View Article][PubMed]
    [Google Scholar]
  23. Sasser M. Bacterial Identification by Gas Chromatographic Analysis of Fatty Acid Methyl Esters (GC-FAME), MIDI Tech Note 101 Newark. MIDI Inc; 1990
    [Google Scholar]
  24. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  25. Komagata K, Suzuki K. 4 lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207
    [Google Scholar]
  26. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  27. Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol 2000; 7:203–214 [View Article][PubMed]
    [Google Scholar]
  28. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article][PubMed]
    [Google Scholar]
  29. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  30. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  31. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article][PubMed]
    [Google Scholar]
  32. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  34. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  36. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Brenner DJ, Grimont PAD et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004356
Loading
/content/journal/ijsem/10.1099/ijsem.0.004356
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error