sp. nov., isolated from forest soil Free

Abstract

A Gram-stain-negative, strictly aerobic, non-motile and rod-shaped bacterial strain, O9, was isolated from a forest soil sample collected at Dai, Xishuangbanna, Yunnan Province, PR China. Strain O9 grew optimally at pH 7.0, at 28‒30 °C and in the absence of NaCl. 16S rRNA gene sequence analysis placed strain O9 within the genus of the family with KP01 (97.8 %), JN53 (97.7 %), JS16-4 (97.4 %), JN246 (97.3 %) and DHOC24 (97.3 %) as its closest relatives. Strain O9 hydrolysed casein, gelatin and Tween 80. It could not assimilate -arabinose, -rhamnose, sucrose, melibiose, gentiobiose or -fructose as a carbon source. It was negative for esterase lipase (C8) and -glucosidase. Phosphatidylethanolamine was the predominant polar lipid. The major respiratory quinone of strain O9 was MK-7. Its major fatty acids were iso-C (34.2 %), C 5 (20.9 %) and iso-C 3-OH (12.6 %). The genomic DNA G+C content of strain O9 was 49.0 mol% based on total genome calculations. The average nucleotide identity score between the genomic sequence of strain O9 and that of KP01 was 72.9%. The Genome-to-Genome Distance Calculator showed that DNA‒DNA hybridization values for strain O9 and KP01 were 13.6, 21.1 and 14.4%, respectively. Based on the polyphasic taxonomic data, strain O9 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is O9 (=CGMCC 1.12462=KCTC 32404).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award NSFC, grant number 31070002)
  • National Key Research and Development Program of China (Award 2016YFC0501302)
    • Principle Award Recipient: Jianli Zhang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004350
2020-07-23
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/8/4808.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004350&mimeType=html&fmt=ahah

References

  1. Sangkhobol V, Skerman VBD. Chitinophaga, a new genus of chitinolytic myxobacteria. Int J Syst Bacteriol 1981; 31:285–293 [View Article]
    [Google Scholar]
  2. Lv YY, Zhang XJ, Li AZ, Zou WL, Feng GD et al. Chitinophaga varians sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2018; 68:2139–2144 [View Article][PubMed]
    [Google Scholar]
  3. Kim S-J, Cho H, Ahn J-H, Weon H-Y, Joa J-H et al. Chitinophaga rhizosphaerae sp. nov., isolated from rhizosphere soil of a tomato plant. Int J Syst Evol Microbiol 2017; 67:3435–3439 [View Article][PubMed]
    [Google Scholar]
  4. Li N, Chen T, Cheng D, Xu X-J, He J. Chitinophaga sedimenti sp. nov., isolated from sediment. Int J Syst Evol Microbiol 2017; 67:3485–3489 [View Article][PubMed]
    [Google Scholar]
  5. Jin D, Kong X, Wang J, Sun J, Yu X et al. Chitinophaga caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2018; 68:2209–2213 [View Article][PubMed]
    [Google Scholar]
  6. Gao S, Zhang W-B, Sheng X-F, He L-Y, Huang Z. Chitinophaga longshanensis sp. nov., a mineral-weathering bacterium isolated from weathered rock. Int J Syst Evol Microbiol 2015; 65:418–423 [View Article][PubMed]
    [Google Scholar]
  7. Proença DN, Nobre MF, Morais PV. Chitinophaga costaii sp. nov., an endophyte of Pinus pinaster, and emended description of Chitinophaga niabensis . Int J Syst Evol Microbiol 2014; 64:1237–1243 [View Article][PubMed]
    [Google Scholar]
  8. Chung EJ, Park TS, Jeon CO, Chung YR. Chitinophaga oryziterrae sp. nov., isolated from the rhizosphere soil of rice (Oryza sativa L.). Int J Syst Evol Microbiol 2012; 62:3030–3035 [View Article][PubMed]
    [Google Scholar]
  9. Kämpfer P, Young C-C, Sridhar KR, Arun AB, Lai WA et al. Transfer of [Flexibacter] sancti, [Flexibacter] filiformis, [Flexibacter] japonensis and [Cytophaga] arvensicola to the genus Chitinophaga and description of Chitinophaga skermanii sp. nov. Int J Syst Evol Microbiol 2006; 56:2223–2228 [View Article][PubMed]
    [Google Scholar]
  10. Kämpfer P, Lodders N, Falsen E. Hydrotalea flava gen. nov., sp. nov., a new member of the phylum Bacteroidetes and allocation of the genera Chitinophaga, Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Hydrotalea to the family Chitinophagaceae fam. nov. Int J Syst Evol Microbiol 2011; 61:518–523 [View Article]
    [Google Scholar]
  11. Xu P, Li WJ, Xu LH, Jiang CL. A microwave-based method for genomic DNA extraction from actinomycetes. Microbiology 2003; 30:82–84
    [Google Scholar]
  12. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  13. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  15. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  16. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  19. Qi J, Wang B, Hao B-I. Whole proteome prokaryote phylogeny without sequence alignment: a K-string composition approach. J Mol Evol 2004; 58:1–11 [View Article][PubMed]
    [Google Scholar]
  20. Zuo G, Hao B. CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genomics Proteomics Bioinformatics 2015; 13:321–331 [View Article][PubMed]
    [Google Scholar]
  21. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  22. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  24. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  25. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the AD hoc Committee on reconciliation of approaches to bacterial Systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  26. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  27. Zhang Y, Zhuang J, Pang H, Wang Y, Li Y, Zhang JL et al. Paenibacillus lutes sp. nov., isolated from soil. Int J Syst Evol Microbiol 2019; 69:2354–2359 [View Article][PubMed]
    [Google Scholar]
  28. Bernardet J-F, Nakagawa Y, Holmes B. Subcommittee On The Taxonomy Of Flavobacterium And Cytophaga-Like Bacteria Of The International Committee On Systematics Of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  29. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  30. Ohta H, Hattori T. Agromonas oligotrophica gen. nov., sp. nov., a nitrogen-fixing oligotrophic bacterium. Antonie Van Leeuwenhoek 1983; 49:429–446 [View Article][PubMed]
    [Google Scholar]
  31. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8:87–91 [View Article]
    [Google Scholar]
  32. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative Systematics. American Society of Microbiology 2007
    [Google Scholar]
  33. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  34. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  35. Collins MD. Isoprenoid quinone analysis in classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985. pp 267–287
    [Google Scholar]
  36. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  37. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  38. Weon HY, Yoo SH, Kim YJ, Son JA, Kim BY et al. Chitinophaga niabensis sp. nov. and Chitinophaga niastensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009; 59:1267–1271 [View Article][PubMed]
    [Google Scholar]
  39. Cheng C, Wang Q, He LY, Huang Z, Sheng XF. Chitinophaga qingshengii sp. nov., isolated from weathered rock surface. Int J Syst Evol Microbiol 2015; 65:280–285 [View Article][PubMed]
    [Google Scholar]
  40. Lv Y-Y, Wang J, You J, Qiu L-H. Chitinophaga dinghuensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015; 65:4816–4822 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004350
Loading
/content/journal/ijsem/10.1099/ijsem.0.004350
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed