1887

Abstract

An obligately alkaliphilic, anaerobic, proteolytic bacterium was isolated from a sample of Tanatar III soda lake sediment (Altai region, Russia) and designated as strain Z-1701. Cells of strain Z-1701 were short, straight, motile Gram-stain-positive rods. Growth of Z-1701 obligately depended on the presence of sodium carbonate. Strain Z-1701 could utilize various peptides mixtures, such as beef and yeast extracts, peptone, soytone, trypticase and tryptone, as well as such proteins as albumin, gelatin and sodium caseinate. It was able to grow oligotrophically with 0.02 g l yeast extract as the sole energy and carbon source. Carbohydrates did not support the growth of strain Z-1701. The main products released during the growth of strain Z-1701 on tryptone were formate, acetate and ammonium. Strain Z-1701 was able to reduce ferrihydrite, Fe(III)-EDTA, anthraquinone-2,6-disulfonate and elemental sulfur, using proteinaceous substrates as electron donors. In all cases the presence of the electron acceptor in the medium stimulated growth. The main cellular fatty acids were iso-C, iso-C aldehyde, iso-C ω6, C, iso-C aldehyde, C aldehyde and C. The DNA G+C content of the isolate was 43.9 mol%. Phylogenetic analysis based on the concatenated alignment of 120 protein-marker sequences revealed that strain Z-1701 falls into a cluster with the genus , family . 16S rRNA gene sequence identity between strain Z-1701 and species were 88.3–89.75 %. On the basis of its phenotypic characteristics and phylogenetic position, the novel isolate is considered to be a representative of a novel genus and species for which the name gen. nov., sp. nov. is proposed, with Z-1701(=JCM 32929=DSM 109060=VKM B-3261) as its type strain.

Funding
This study was supported by the:
  • , the Basic Research Program №17 of the Presidium of the Russian Academy of Sciences “Evolution of Organic World. The role and influence of planetary processes”
  • Daria G. Zavarzina , the Ministry of Science and Higher Education within the State assignment FRC “Fundamentals of Biotechnology” RAS
  • , Russian Foundation for Basic Research , (Award 17-04-01578)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004341
2020-07-22
2020-09-28
Loading full text...

Full text loading...

References

  1. Ostrovsky YuV, Zabortsev GM, Chernook VA. Desulfurization of soda-adobe of the "Mikhailovsky" deposit of the Altai region. Polsunovski vestnik 2018; 3:116–120 [CrossRef]
    [Google Scholar]
  2. Isachenko BL. Chloride, sulfate and soda lakes of the Kulundinskaya steppe and the biogenic processes therein. Izbrannye Trudy (Selected Works of B. L. Isachenko) Moscow: Akad Nauk SSSR (in Russian); 1951 pp 143–162
    [Google Scholar]
  3. Tindall BJ. Prokaryotic life in the alkaline, saline, athalassic environment. In Rodriguez-Valera F. editor Halophilic Bacteria 1 Boca Raton, FL: CRC Press Inc; 1988 pp 31–67
    [Google Scholar]
  4. Zhilina TN, Zavarzin GA. Alkaliphilic anaerobic community at pH 10. Curr Microbiol 1994; 29:109–112 [CrossRef]
    [Google Scholar]
  5. Duckworth AW, Grant WD, Jones BE, Steenbergen R. Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecol 1996; 19:181–191 [CrossRef]
    [Google Scholar]
  6. Jones BE, Grant WD, Duckworth AW, Owenson GG. Microbial diversity of soda lakes. Extremophiles 1998; 2:191–200 [CrossRef][PubMed]
    [Google Scholar]
  7. Grant S, Grant WD, Jones BE, Kato C, Li L. Novel archaeal phylotypes from an East African alkaline saltern. Extremophiles 1999; 3:139–145 [CrossRef][PubMed]
    [Google Scholar]
  8. Zavarzin GA, Zhilina TN, Kevbrin VV. The alkaliphilic microbial community and its functional diversity. Microbiology 1999; 68:503–521
    [Google Scholar]
  9. Rees HC, Grant WD, Jones BE, Heaphy S. Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods. Extremophiles 2004; 8:63–71 [CrossRef][PubMed]
    [Google Scholar]
  10. Oremland RS, Miller LG. Biogeochemistry of natural gases in three alkaline, permanently stratified (meromictic) lakes. In Howell D. editor The Future of Energy Gases Washington, DC: USGS Professional Paper,; 1993 pp 453–470
    [Google Scholar]
  11. Humayoun SB, Bano N, Hollibaugh JT. Depth distribution of microbial diversity in mono lake, a meromictic soda lake in California. Appl Environ Microbiol 2003; 69:1030–1042 [CrossRef][PubMed]
    [Google Scholar]
  12. Oremland RS, Stolz JF, Hollibaugh JT. The microbial arsenic cycle in mono lake, California. FEMS Microbiol Ecol 2004; 48:15–27 [CrossRef][PubMed]
    [Google Scholar]
  13. Oren A. Two centuries of microbiological research in the Wadi Natrun, Egypt: a model system for the study of the ecology, physiology, and taxonomy of haloalkaliphilic microorganisms. In Seckbach J, Oren A, Stan-Lotter H. (editors) Polyextremophiles. Cellular Origin, Life in Extreme Habitats and Astrobiology 27 Springer: Dordrecht; 2013 pp 101–119
    [Google Scholar]
  14. Zavarzin GA. Epicontinental soda lakes as probable relict biotopes of terrestrial biota formation. Microbiology 1993; 62:473–479
    [Google Scholar]
  15. Gal'chenko VF. editor In Alkaliphilic Microbial Communities Proceedings of the Winogradsky Institute of Microbiology. Winogradsky Institute of Microbiology RAS-Moscow: Nauka, 1951 14 Moscow: Nauka (in Russian); 2007 p 396
    [Google Scholar]
  16. Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD et al. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 2014; 18:791–809 [CrossRef][PubMed]
    [Google Scholar]
  17. Sorokin DY, Banciu HL, Muyzer G. Functional microbiology of soda lakes. Curr Opin Microbiol 2015; 25:88–96 [CrossRef][PubMed]
    [Google Scholar]
  18. Samylina OS, Gerasimenko LM, Shadrin NV. Comparative characteristic of the phototroph communities from the mineral lakes of Crimea (Ukraine) and Altai region (Russia). Int J Algae 2010; 12:142–158 [CrossRef]
    [Google Scholar]
  19. Samylina OS, Sapozhnikov FV, Gainova OY, Ryabova AV, Nikitin MA et al. Algo-bacterial phototrophic communities of soda lakes in Kulunda steppe (Altai, Russia). Microbiology 2014; 83:849–860
    [Google Scholar]
  20. Zhilina TN, Zavarzina DG, Panteleeva AN, Osipov GA, Kostrikina NA et al. Fuchsiella alkaliacetigena gen. nov., sp. nov., an alkaliphilic, lithoautotrophic homoacetogen from a soda lake. Int J Syst Evol Microbiol 2012; 62:1666–1673 [CrossRef][PubMed]
    [Google Scholar]
  21. Zhilina TN, Zavarzina DG, Kevbrin VV, Kolganov TV. Methanocalculus natronophilus sp. nov., a new alkaliphilic hydrogenotrophic methanogenic archaeon from a soda lake, and proposal of the new family Methanocalculaceae . Mikrobiologiia 2013; 82:698–706 [CrossRef][PubMed]
    [Google Scholar]
  22. Zhilina TN, Zavarzina DG, Detkova EN, Patutina EO, Kuznetsov BB. Fuchsiella ferrireducens sp. nov., a novel haloalkaliphilic, lithoautotrophic homoacetogen capable of iron reduction, and emendation of the description of the genus Fuchsiella . Int J Syst Evol Microbiol 2015; 65:2432–2440 [CrossRef][PubMed]
    [Google Scholar]
  23. Sorokin DY, Kublanov IV, Yakimov MM, Rijpstra WIC, Sinninghe Damsté JS. Halanaeroarchaeum sulfurireducens gen. nov., sp. nov., the first obligately anaerobic sulfur-respiring haloarchaeon, isolated from a hypersaline lake. Int J Syst Evol Microbiol 2016; 66:2377–2381 [CrossRef][PubMed]
    [Google Scholar]
  24. Sorokin DY, Kublanov IV, Khijniak TV. Natronospira proteinivora gen. nov., sp. nov, an extremely salt-tolerant, alkaliphilic gammaproteobacterium from hypersaline soda lakes. Int J Syst Evol Microbiol 2017; 67:2604–2608 [CrossRef][PubMed]
    [Google Scholar]
  25. Sorokin DY, Messina E, La Cono V, Ferrer M, Ciordia S et al. Sulfur respiration in a group of facultatively anaerobic Natronoarchaea ubiquitous in hypersaline soda lakes. Front Microbiol 2018; 9: [CrossRef]
    [Google Scholar]
  26. Sorokin DY, Elcheninov AG, Toshchakov SV, Bale NJ, Sinninghe Damsté JS et al. Natrarchaeobius chitinivorans gen. nov., sp. nov., and Natrarchaeobius halalkaliphilus sp. nov., alkaliphilic, chitin-utilizing haloarchaea from hypersaline alkaline lakes. Syst Appl Microbiol 2019; 42:309–318 [CrossRef][PubMed]
    [Google Scholar]
  27. Sorokin DY, Khijniak TV, Elcheninov AG, Toshchakov SV, Kostrikina NA et al. Halococcoides cellulosivorans gen. nov., sp. nov., an extremely halophilic cellulose-utilizing haloarchaeon from hypersaline lakes. Int J Syst Evol Microbiol 2019; 69:1327–1335 [CrossRef][PubMed]
    [Google Scholar]
  28. Foti M, Sorokin DY, Lomans B, Mussman M, Zacharova EE et al. Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl Environ Microbiol 2007; 73:2093–2100 [CrossRef][PubMed]
    [Google Scholar]
  29. Foti MJ, Sorokin DY, Zacharova EE, Pimenov NV, Kuenen JG et al. Bacterial diversity and activity along a salinity gradient in soda lakes of the Kulunda steppe (Altai, Russia). Extremophiles 2008; 12:133–145 [CrossRef][PubMed]
    [Google Scholar]
  30. Sorokin DY, Rusanov II, Pimenov NV, Tourova TP, Abbas B et al. Sulfidogenesis under extremely haloalkaline conditions in soda lakes of Kulunda steppe (Altai, Russia). FEMS Microbiol Ecol 2010; 73:no–290 [CrossRef][PubMed]
    [Google Scholar]
  31. Sorokin DY, Zacharova EE, Pimenov NV, Tourova TP, Panteleeva AN et al. Sulfidogenesis in hypersaline chloride-sulfate lakes of Kulunda steppe (Altai, Russia). FEMS Microbiol Ecol 2012; 79:445–453 [CrossRef][PubMed]
    [Google Scholar]
  32. Sorokin DY, Toshchakov SV, Kolganova TV, Kublanov IV. Halo(natrono)archaea isolated from hypersaline lakes utilize cellulose and chitin as growth substrates. Front Microbiol 2015; 6:942 [CrossRef][PubMed]
    [Google Scholar]
  33. Sorokin DY, Abbas B, Geleijnse M, Pimenov NV, Sukhacheva MV et al. Methanogenesis at extremely haloalkaline conditions in the soda lakes of Kulunda steppe (Altai, Russia). FEMS Microbiol Ecol 2015; 91:fiv016 [CrossRef][PubMed]
    [Google Scholar]
  34. Sorokin DY, Kublanov IV, Gavrilov SN, Rojo D, Roman P et al. Elemental sulfur and acetate can support life of a novel strictly anaerobic haloarchaeon. ISME J 2016; 10:240–252 [CrossRef][PubMed]
    [Google Scholar]
  35. Sorokin DY, Messina E, Smedile F, Roman P, Damsté JSS et al. Discovery of anaerobic lithoheterotrophic haloarchaea, ubiquitous in hypersaline habitats. ISME J 2017; 11:1245–1260 [CrossRef][PubMed]
    [Google Scholar]
  36. Namsaraev Z, Samylina O, Sukhacheva M, Borisenko G, Sorokin DY et al. Effect of salinity on diazotrophic activity and microbial composition of phototrophic communities from Bitter-1 soda lake (Kulunda steppe, Russia). Extremophiles 2018; 22:651–663 [CrossRef][PubMed]
    [Google Scholar]
  37. Vavourakis CD, Andrei A-S, Mehrshad M, Ghai R, Sorokin DY et al. A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. Microbiome 2018; 6:168 [CrossRef][PubMed]
    [Google Scholar]
  38. Vavourakis CD, Mehrshad M, Balkema C, van Hall R, Andrei Adrian-Ştefan et al. Metagenomes and metatranscriptomes shed new light on the microbial-mediated sulfur cycle in a Siberian soda lake. BMC Biol 2019; 17:69 [CrossRef][PubMed]
    [Google Scholar]
  39. Samylina OS, Namsaraev ZB, Grouzdev DS, Slobodova NV, Zelenev VV et al. The patterns of nitrogen fixation in haloalkaliphilic phototrophic communities of Kulunda steppe soda lakes (Altai, Russia). FEMS Microbiol Ecol 2019; 95:fiz174 [CrossRef][PubMed]
    [Google Scholar]
  40. Kevbrin V, Boltyanskaya Y, Zhilina T, Kolganova T, Lavrentjeva E et al. Proteinivorax tanatarense gen. nov., sp. nov., an anaerobic, haloalkaliphilic, proteolytic bacterium isolated from a decaying algal bloom, and proposal of Proteinivoraceae fam. nov. Extremophiles 2013; 17:747–756 [CrossRef][PubMed]
    [Google Scholar]
  41. Boltyanskaya YV, Kevbrin VV. Trophic interactions of proteolytic bacteria Proteinivorax tanatarense in an alkaliphilic microbial community. Microbiology 2016; 85:481–487 [CrossRef]
    [Google Scholar]
  42. Boltyanskaya Y, Detkova E, Pimenov N, Kevbrin V. Proteinivorax hydrogeniformans sp. nov., an anaerobic, haloalkaliphilic bacterium fermenting proteinaceous compounds with high hydrogen production. Antonie van Leeuwenhoek 2018; 111:1–10 [CrossRef][PubMed]
    [Google Scholar]
  43. Sorokin DY, Muntyan MS, Toshchakov SV, Korzhenkov A, Kublanov IV. Phenotypic and genomic properties of a novel deep-lineage haloalkaliphilic member of the phylum Balneolaeota from soda lakes possessing Na+-translocating proteorhodopsin. Front Microbiol 2018; 9:2672 [CrossRef]
    [Google Scholar]
  44. Kevbrin VV, Zavarzin GA. The effect of sulfur compounds on the growth of halophilic homoacetic bacterium Acetohalobium arabaticum . Microbiology 1992; 61:812–817
    [Google Scholar]
  45. Zavarzina DG, Kolganova TV, Boulygina ES, Kostrikina NA, Tourova TP et al. Geoalkalibacter ferrihydriticus gen. nov. sp. nov., the first alkaliphilic representative of the family Geobacteraceae, isolated from a soda lake. Microbiology 2006; 75:673–682 [CrossRef][PubMed]
    [Google Scholar]
  46. Zhilina TN, Zavarzin GA, Detkova EN, Rainey FA. Natroniella acetigena gen. nov. sp. nov., an extremely haloalkaliphilic, homoacetic bacterium: a new member of Haloanaerobiales . Curr Microbiol 1996; 32:320–326 [CrossRef][PubMed]
    [Google Scholar]
  47. Trüper HG, Schlegel HG. Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells of Chromatium okenii . Antonie Van Leeuwenhoek 1964; 30:225–238 [CrossRef]
    [Google Scholar]
  48. Stookey LL. Ferrozine-a new spectrophotometric reagent for iron. Anal Chem 1970; 42:779–781 [CrossRef]
    [Google Scholar]
  49. Boulygina ES, Kuznetsov BB, Marusina AI, Tourova TP, Kravchenko IK et al. The study of nucleotide sequences of nifH genes from some methanotrophic bacteria. Microbiology 2002; 71:425–432
    [Google Scholar]
  50. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.. J Comput Biol 2012; 19:455–477 [CrossRef]
    [Google Scholar]
  51. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [CrossRef][PubMed]
    [Google Scholar]
  52. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [CrossRef][PubMed]
    [Google Scholar]
  53. Couvin D, Bernheim A, Toffano-Nioche C, Touchon M, Michalik J et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 2018; 46:W246–W251 [CrossRef][PubMed]
    [Google Scholar]
  54. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 2015; 13:722–736 [CrossRef][PubMed]
    [Google Scholar]
  55. Vestergaard G, Garrett RA, Shah SA. CRISPR adaptive immune systems of Archaea. RNA Biol 2014; 11:156–167 [CrossRef][PubMed]
    [Google Scholar]
  56. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [CrossRef][PubMed]
    [Google Scholar]
  57. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  58. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000 p pp. 348
    [Google Scholar]
  59. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 2019btz848. [CrossRef][PubMed]
    [Google Scholar]
  60. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [CrossRef][PubMed]
    [Google Scholar]
  61. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [CrossRef][PubMed]
    [Google Scholar]
  62. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [CrossRef][PubMed]
    [Google Scholar]
  63. Letunic I, Bork P. Interactive tree of life (iTOL) V3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [CrossRef][PubMed]
    [Google Scholar]
  64. Wiegel J. Clostridiaceae. In Whitman WB. editor Bergey's Manual of Systematics of Archaea and Bacteria, 3d ed, on-line. Wiley: 2015
    [Google Scholar]
  65. Ezaki T. Peptostreptococcaceae. In Whitman WB. editor Bergey's Manual of Systematics of Archaea and Bacteria, 3d ed, on-line. Wiley: 2015
    [Google Scholar]
  66. Kevbrin VV, Zhilina TN, Rainey FA, Zavarzin GA. Tindallia magadii gen. nov., sp. nov.: an alkaliphilic anaerobic ammonifier from soda lake deposits. Curr Microbiol 1998; 37:94–100 [CrossRef][PubMed]
    [Google Scholar]
  67. Pikuta EV, Hoover RB, Bej AK, Marsic D, Detkova EN et al. Tindallia californiensis sp. nov., a new anaerobic, haloalkaliphilic, spore-forming acetogen isolated from mono lake in California. Extremophiles 2003; 7:327–334 [CrossRef]
    [Google Scholar]
  68. Alazard D, Badillo C, Fardeau M-L, Cayol J-L, Thomas P et al. Tindallia texcoconensis sp. nov., a new haloalkaliphilic bacterium isolated from lake Texcoco, Mexico. Extremophiles 2007; 11:33–39 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004341
Loading
/content/journal/ijsem/10.1099/ijsem.0.004341
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error