1887

Abstract

Four novel strains (592, S592, MF47 and SMF47) were isolated from Tibetan antelopes () and plateau pikas (), respectively. The cells were aerobic, non-motile, Gram-stain- and catalase-positive, rod-shaped bacteria. The 16S rRNA gene sequences of the four strains showed highest similarities to DSM 10552 (98.1, 98.6, 98.7 and 98.7 %, respectively), and the phylogenetic analyses based on 16S rRNA gene and genomic sequences indicated that strains 592 and MF47 represent two novel species. The four isolates produced acid from -rhamnose, -xylose and cellobiose, but were unable to reduce nitrate. The DNA G+C contents of strains 592 and MF47 were 70.3 and 69.8 mol%, respectively. The digital DNA–DNA hybridization value between strains 592 and MF47 was 32.6 %, lower than the threshold of 70 %, indicating they belong to different species. The four strains’ genomes displayed less than 24.6 % DNA–DNA relatedness with all available genomes of the genus in the NCBI database, including NBRC 14897 and JCM 14732. The major fatty acids of the four strains were C ω9 and C 10-methyl, and the main polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol. The predominant respiratory quinones were MK-9(H) and MK-8(H). The cell-wall peptidoglycan contained -diaminopimelic acid. Based on these genotypic, phenotypic and biochemical analyses, it is proposed that the four unidentified bacteria be classified as two novel species, sp. nov. and sp. nov. The type strains are 592 (=CGMCC1.16526=DSM 106289) and MF47 (=CGMCC 1.17444=JCM 33790), respectively.

Funding
This study was supported by the:
  • Jianguo Xu , Research Units of Discovery of Unknown Bacteria and Function , (Award 2018RU010)
  • Jianguo Xu , Sanming Project of Medicine in Shenzhen , (Award SZSM201811071)
  • Dong Jin , National Key R&D Program of China , (Award 2018YFC1200102)
  • Shan Lu , National Science and Technology Major Project of China , (Award 2018ZX10712001-018)
  • Jing Yang , National Science and Technology Major Project of China , (Award 2018ZX10712001-007)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004331
2020-07-21
2020-10-20
Loading full text...

Full text loading...

References

  1. Miller ES, Woese CR, Brenner S. Description of the erythromycin-producing bacterium Arthrobacter sp. strain NRRL B-3381 as Aeromicrobium erythreum gen. nov., sp. nov. Int J Syst Bacteriol 1991; 41:363–368 [CrossRef][PubMed]
    [Google Scholar]
  2. Yoon J-H, Lee C-H, Oh T-K. Aeromicrobium alkaliterrae sp. nov., isolated from an alkaline soil, and emended description of the genus Aeromicrobium . Int J Syst Evol Microbiol 2005; 55:2171–2175 [CrossRef][PubMed]
    [Google Scholar]
  3. Siddiqi MZ, Lee SY, Choi KD, Im W-T. Aeromicrobium panacisoli sp. nov. isolated from soil of ginseng cultivating field. Curr Microbiol 2018; 75:624–629 [CrossRef][PubMed]
    [Google Scholar]
  4. Sun Y, Liu W-H, Ai M-J, Su J, Yu L-Y et al. Aeromicrobium lacus sp. nov., a novel actinobacterium isolated from a drinking-water reservoir. Int J Syst Evol Microbiol 2019; 69:460–464 [CrossRef][PubMed]
    [Google Scholar]
  5. Li F-N, Liao S-L, Liu S-W, Jin T, Sun C-H. Aeromicrobium endophyticum sp. nov., an endophytic actinobacterium isolated from reed (Phragmites australis). J Microbiol 2019; 57:725–731 [CrossRef][PubMed]
    [Google Scholar]
  6. Yan Z-F, Lin P, Chu X, Kook M, Li C-T et al. Aeromicrobium halotolerans sp. nov., isolated from desert soil sample. Arch Microbiol 2016; 198:423–427 [CrossRef][PubMed]
    [Google Scholar]
  7. Bruns A, Philipp H, Cypionka H, Brinkhoff T. Aeromicrobium marinum sp. nov., an abundant pelagic bacterium isolated from the German Wadden sea. Int J Syst Evol Microbiol 2003; 53:1917–1923 [CrossRef][PubMed]
    [Google Scholar]
  8. Tang Y, Zhou G, Zhang L, Mao J, Luo X et al. Aeromicrobium flavum sp. nov., isolated from air. Int J Syst Evol Microbiol 2008; 58:1860–1863 [CrossRef][PubMed]
    [Google Scholar]
  9. Ramasamy D, Kokcha S, Lagier J-C, Nguyen T-T, Raoult D et al. Genome sequence and description of Aeromicrobium massiliense sp. nov. Stand Genomic Sci 2012; 7:246–257 [CrossRef][PubMed]
    [Google Scholar]
  10. Ber P, Trappen SV, Vandamme P, Trček J. Aeromicrobium choanae sp. nov., an actinobacterium isolated from the choana of a garden warbler. Int J Syst Evol Microbiol 2017; 67:357–361 [CrossRef][PubMed]
    [Google Scholar]
  11. Wang X, Yang J, Lu S, Lai X-H, Jin D et al. Nocardioides houyundeii sp. nov., isolated from Tibetan antelope faeces. Int J Syst Evol Microbiol 2018; 68:3874–3880 [CrossRef][PubMed]
    [Google Scholar]
  12. Huang Y, Wang X, Yang J, Lu S, Lai X-H et al. Nocardioides yefusunii sp. nov., isolated from Equus kiang (Tibetan wild ass) faeces. Int J Syst Evol Microbiol 2019; 69:3629–3635 [CrossRef][PubMed]
    [Google Scholar]
  13. Li J, Lu S, Jin D, Yang J, Lai X-H et al. Salinibacterium hongtaonis sp. nov., isolated from faeces of Tibetan antelope (Pantholops hodgsonii) on the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2019; 69:1093–1098 [CrossRef][PubMed]
    [Google Scholar]
  14. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [CrossRef][PubMed]
    [Google Scholar]
  15. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  16. Tomohiko T, Akira Y. Transfer of Nocardioides fastidiosa Collins and Stackebrandt 1989 to the genus Aeromicrobium as Aeromicrobium fastidiosum comb. nov. Int J Syst Evol Microbiol 1994; 44:608–611
    [Google Scholar]
  17. Kim MK, Park M-J, Im W-T, Yang D-C. Aeromicrobium ginsengisoli sp. nov., isolated from a ginseng field. Int J Syst Evol Microbiol 2008; 58:2025–2030 [CrossRef][PubMed]
    [Google Scholar]
  18. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012; 61:1061–1067 [CrossRef][PubMed]
    [Google Scholar]
  19. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [CrossRef][PubMed]
    [Google Scholar]
  20. Chen C, Zhang W, Zheng H, Lan R, Wang H et al. Minimum core genome sequence typing of bacterial pathogens: a unified approach for clinical and public health microbiology. J Clin Microbiol 2013; 51:2582–2591 [CrossRef][PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinf 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  22. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  23. Kim S-J, Jang Y-H, Hamada M, Tamura T, Ahn J-H et al. Homoserinimonas aerilata gen. nov., sp. nov., a novel member of the family Microbacteriaceae isolated from an air sample in Korea. J Microbiol 2012; 50:673–679 [CrossRef][PubMed]
    [Google Scholar]
  24. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids 101, MIDI Technical Note. 2001
    [Google Scholar]
  25. Altenburgera P, Kämpferb P, Makristathisc A, Lubitza W, Bussea H-J. Classification of bacteria isolated from a medieval wall painting. J Bacteriol 1996; 47:39–52 [CrossRef]
    [Google Scholar]
  26. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [CrossRef]
    [Google Scholar]
  27. Lee DW, Lee SD. Aeromicrobium ponti sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2008; 58:987–991 [CrossRef][PubMed]
    [Google Scholar]
  28. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [CrossRef]
    [Google Scholar]
  29. Niu L, Xiong M, Tang T, Song L, Hu X et al. Aeromicrobium camelliae sp. nov., isolated from Pu'er tea. Int J Syst Evol Microbiol 2015; 65:4369–4373 [CrossRef][PubMed]
    [Google Scholar]
  30. Park YH, Yoon JH, Shin YK, Suzuki K, Kudo T et al. Classification of 'Nocardioides fulvus' IFO 14399 and Nocardioides sp. ATCC 39419 in Kribbella gen. nov., as Kribbella flavida sp. nov. and Kribbella sandramycini sp. nov. Int J Syst Bacteriol 1999; 49 Pt 2:743–752 [CrossRef][PubMed]
    [Google Scholar]
  31. Cui Y-S, Im W-T, Yin C-R, Lee J-S, Lee KC et al. Aeromicrobium panaciterrae sp. nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 2007; 57:687–691 [CrossRef][PubMed]
    [Google Scholar]
  32. Kim SH, Yang HO, Sohn YC, Kwon HC. Aeromicrobium halocynthiae sp. nov., a taurocholic acid-producing bacterium isolated from the marine ascidian Halocynthia roretzi . Int J Syst Evol Microbiol 2010; 60:2793–2798 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004331
Loading
/content/journal/ijsem/10.1099/ijsem.0.004331
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error