1887

Abstract

A novel Gram-stain-positive bacterium, designated CFH 91151, was isolated from sediment collected from a saline lake in Yuncheng, Shanxi Province, PR China. Cells of strain CFH 91151 were rod-or v-shaped, aerobic, non-motile, non-spore-forming and halotolerant. Results of 16S rRNA gene sequence analysis revealed that strain CFH 91151 was closely related to MX5 and H17 (98.7 and 98.4% sequence similarity, respectively). The strain grew at 4–45 °C, pH 5.0–9.0 and with 0–14.0 % (w/v) NaCl. Cells were positive for catalase, nitrate was not used and HS was not produced. Major cellular fatty acids were anteiso-C (62.76 %), anteiso-C (12.09 %) and iso-C (9.46 %). The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two unidentified phospholipids and three unidentified glycolipids. The menaquinone was MK-9 (H4). The genome size was 4.10 Mbp with a G+C content of 72.4 mol%. The average amino acid identity (ANI) and DNA–DNA hybridization (DDH) values between CFH 91151 and the other species of the genus were found to be low (ANIm <87.19 %, ANIb <84.38 % and DDH <29.30 %). Based on physiological properties, chemotaxonomic characteristics and low ANI and DDH results, strain CFH 91151 is considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is CFH 91151 (=DSM 105976=KCTC 49061).

Funding
This study was supported by the:
  • Doctor Scientific Research Fund of Xinxiang Medical University (Award XYBSKYZZ201625)
    • Principle Award Recipient: Hong Ming
  • Henan Province University youth researcher support project (Award 2017GGJS106)
    • Principle Award Recipient: Hong Ming
  • Innovation Scientists and Technicians Troop Construction Projects of Henan Province (Award CXTD2016043)
    • Principle Award Recipient: Guo-Xing Nie
  • Natural Science Foundation of China (Award 3150004)
    • Principle Award Recipient: Hong Ming
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004329
2020-07-20
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/8/4661.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004329&mimeType=html&fmt=ahah

References

  1. Stackebrandt E, Schumann P, Cui X-L. Reclassification of Cellulosimicrobium variabile Bakalidou et al. 2002 as Isoptericola variabilis gen. nov., comb. nov. Int J Syst Evol Microbiol 2004; 54:685–688 [View Article][PubMed]
    [Google Scholar]
  2. Bakalidou A, Kämpfer P, Berchtold M, Kuhnigk T, Wenzel M et al. Cellulosimicrobium variabile sp. nov., a cellulolytic bacterium from the hindgut of the termite Mastotermes darwiniensis . Int J Syst Evol Microbiol 2002; 52:1185–1192 [View Article][PubMed]
    [Google Scholar]
  3. Groth I, Schumann P, Schütze B, Gonzalez JM, Laiz L et al. Isoptericola hypogeus sp. nov., isolated from the Roman catacomb of Domitilla. Int J Syst Evol Microbiol 2005; 55:1715–1719 [View Article][PubMed]
    [Google Scholar]
  4. Zhang Y-Q, Schumann P, Li W-J, Chen G-Z, Tian X-P et al. Isoptericola halotolerans sp. nov., a novel actinobacterium isolated from saline soil from Qinghai Province, north-west China. Int J Syst Evol Microbiol 2005; 55:1867–1870 [View Article][PubMed]
    [Google Scholar]
  5. Yoon J-H, Schumann P, Kang S-J, Jung S-Y, Oh T-K. Isoptericola dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2006; 56:2893–2897 [View Article][PubMed]
    [Google Scholar]
  6. Tseng M, Liao HC, Chiang WP, Yuan GF. Isoptericola chiayiensis sp. nov., isolated from mangrove soil. Int J Syst Evol Microbiol 2011; 61:1667–1670 [View Article][PubMed]
    [Google Scholar]
  7. Huang Z, Sheng X-F, Zhao F, He L-Y, Huang J et al. Isoptericola nanjingensis sp. nov., a mineral-weathering bacterium. Int J Syst Evol Microbiol 2012; 62:971–976 [View Article][PubMed]
    [Google Scholar]
  8. Wu Y, Li W-J, Tian W, Zhang L-P, Xu L et al. Isoptericola jiangsuensis sp. nov., a chitin-degrading bacterium. Int J Syst Evol Microbiol 2010; 60:904–908 [View Article][PubMed]
    [Google Scholar]
  9. Kämpfer P, Glaeser SP, Kloepper JW, Hu C-H, McInroy JA et al. Isoptericola cucumis sp. nov. isolated from the root tissue of cucumber (Cucumis sativus). Int J Syst Evol Microbiol 2016; 66:2784–2788 [View Article][PubMed]
    [Google Scholar]
  10. Guan T-W, Teng Y, Yang L-L, Zhang X-P, Che Z-M. Isoptericola salitolerans sp. nov., a halotolerant filamentous actinobacterium isolated from a salt lake, China. Extremophiles 2013; 17:471–476 [View Article][PubMed]
    [Google Scholar]
  11. Kaur N, Rajendran MK, Kaur G, Shanmugam M. Isoptericola rhizophila sp. nov., a novel actinobacterium isolated from rhizosphere soil. Antonie Van Leeuwenhoek 2014; 106:301–307 [View Article][PubMed]
    [Google Scholar]
  12. Wang R, Ye Z, Huang WC, SY X, Dai CL et al. Isolation, identification and characteristics of a salt-tolerant autotrophic ferrous-dependent denitrifying bacterium. Journal of Chemical Engineering of Chinese Universities 2017; 31:456–462
    [Google Scholar]
  13. Dou W, Wei D, Li H, Li H, Rahman MM et al. Purification and characterisation of a bifunctional alginate lyase from novel Isoptericola halotolerans CGMCC 5336. Carbohydr Polym 2013; 98:1476–1482 [View Article][PubMed]
    [Google Scholar]
  14. Santhi VS, Gupta A, Saranya S, Jebakumar SRD. A novel marine bacterium Isoptericola sp. JS-C42 with the ability to saccharifying the plant biomasses for the aid in cellulosic ethanol production. Biotechnol Rep 2014; 1-2:8–14 [View Article][PubMed]
    [Google Scholar]
  15. Tang SK, Jiang Y, Zhi XY, Lou K, Wj L et al. Isolation methods of halophilic actinomycetes. Microbiology 2007; 34:390–392
    [Google Scholar]
  16. Tarhriz V, Thiel V, Nematzadeh G, Hejazi MA, Imhoff JF et al. Tabrizicola aquatica gen. nov. sp. nov., a novel alphaproteobacterium isolated from Qurugöl Lake nearby Tabriz city, Iran. Antonie Van Leeuwenhoek 2013; 104:1205–1215 [View Article][PubMed]
    [Google Scholar]
  17. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  19. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  23. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  25. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  27. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article][PubMed]
    [Google Scholar]
  28. Freel KC, Sarilar V, Neuvéglise C, Devillers H, Friedrich A et al. Genome sequence of the yeast Cyberlindnera fabianii (Hansenula fabianii) . Genome Announc 2014; 2:e00638-14 [View Article][PubMed]
    [Google Scholar]
  29. Delcher AL. Glimmer release notes version 3.02; 2006
  30. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  31. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004; 5:R12–2483 [View Article][PubMed]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  33. Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 2012; 28:1033–1034 [View Article][PubMed]
    [Google Scholar]
  34. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  35. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article][PubMed]
    [Google Scholar]
  36. Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 2012; 5:e9490 [View Article]
    [Google Scholar]
  37. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  38. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  39. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. Antismash 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article][PubMed]
    [Google Scholar]
  40. Cerny G. Studies on the aminopeptidase test for the distinction of gram-negative from gram-positive bacteria. Appl Microbiol Biotechnol 1978; 5:113–122 [View Article]
    [Google Scholar]
  41. Leifson E. Atlas of bacterial flagellation. Q Rev Biol 1960; 242:
    [Google Scholar]
  42. Ming H, Yin Y-R, Li S, Nie G-X, Yu T-T et al. Thermus caliditerrae sp. nov., a novel thermophilic species isolated from a geothermal area. Int J Syst Evol Microbiol 2014; 64:650–656 [View Article][PubMed]
    [Google Scholar]
  43. Nie G-X, Ming H, Li S, Zhou E-M, Cheng J et al. Amycolatopsis dongchuanensis sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 2012; 62:2650–2656 [View Article][PubMed]
    [Google Scholar]
  44. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  45. Waksman SA. The Actinomycetes. a Summary of Current Knowledge New York: Ronald Press; 1967
    [Google Scholar]
  46. Atlas RM. Parks LC. editor Handbook of Microbiological Media Boca Raton, FL: CRC Press; 1993
    [Google Scholar]
  47. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  48. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article][PubMed]
    [Google Scholar]
  49. Nie G-X, Ming H, Li S, Zhou E-M, Cheng J et al. Geodermatophilus nigrescens sp. nov., isolated from a dry-hot valley. Antonie van Leeuwenhoek 2012; 101:811–817 [View Article][PubMed]
    [Google Scholar]
  50. Gordon RE, Barnett DA, Handerhan JE, PANG CH-N. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  51. Gooch JW. Kirby-Bauer Method. In Gooch JW. editor Encyclopedic Dictionary of Polymers 704 Springer; 2011
    [Google Scholar]
  52. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: Microbial ID, Inc; 1990
    [Google Scholar]
  53. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  54. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  55. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  56. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  57. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  58. Schleifer KH. Analysis of the chemical composition and primary structure of murein. Methods Microbiol 1985; 18:123–156
    [Google Scholar]
  59. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article][PubMed]
    [Google Scholar]
  60. MacKenzie SL. Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 1987; 70:151–160 [View Article][PubMed]
    [Google Scholar]
  61. Whiton RS, Lau P, Morgan SL, Gilbart J, Fox A. Modifications in the alditol acetate method for analysis of muramic acid and other neutral and amino sugars by capillary gas chromatography-mass spectrometry with selected ion monitoring. J Chromatogr 1985; 347:109–120 [View Article][PubMed]
    [Google Scholar]
  62. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article][PubMed]
    [Google Scholar]
  63. Uchida K, Aida KO. An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol 1984; 30:131–134 [View Article]
    [Google Scholar]
  64. Minnikin DE, Alshamaony L, Goodfellow M. Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol 1975; 88:200–204 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004329
Loading
/content/journal/ijsem/10.1099/ijsem.0.004329
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error