1887

Abstract

Bacteria of the genus are relevant to humans, animals and plants. The species and are Gram-stain-positive and endospore-forming bacilli isolated from a blood culture of a leukemia patient and from soil of a ginseng field, respectively. Comparative analyses of their 16S rRNA genes revealed that the two species could be synonyms (99.3% sequence identity). In the present study we performed different genomic analyses in order to evaluate the phylogenetic relationship of these micro-organisms. DSM 16942 and DSM 21345 presented a difference in their G+C content lower than 1 mol%, overall genome relatedness index values higher than the species circumscription thresholds (average nucleotide identity, 95.57 %; genome-wide ANI, =96.51 %; and orthologous ANI, 96.25 %), and a monophyletic grouping pattern in the phylogenies of the 16S rRNA gene and the proteome core. Considering that these strains present differential biochemical capabilities and that their computed digital DNA–DNA hybridization value is lower than the cut-off for bacterial subspecies circumscription, we suggest that each of them form different subspecies of , subsp. subsp. nov. (type strain DSM 21345) and subsp. subsp. nov. (type strain DSM 16942).

Funding
This study was supported by the:
  • Fabiana Tonial , Conselho Nacional de Desenvolvimento Científico e Tecnológico
  • Fabiana Tonial , Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004328
2020-07-21
2020-09-20
Loading full text...

Full text loading...

References

  1. Grady EN, MacDonald J, Liu L, Richman A, Yuan Z-C. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 2016; 15:203 [CrossRef][PubMed]
    [Google Scholar]
  2. Uetanabaro AP, Wahrenburg C, Hunger W, Pukall R, Spröer C et al. Paenibacillus agarexedens sp. nov., nom. rev., and Paenibacillus agaridevorans sp. nov. Int J Syst Evol Microbiol 2003; 53:1051–1057 [CrossRef][PubMed]
    [Google Scholar]
  3. Montes MJ, Mercadé E, Bozal N, Guinea J. Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol 2004; 54:1521–1526 [CrossRef][PubMed]
    [Google Scholar]
  4. Validov S, Kamilova F, Qi S, Stephan D, Wang JJ et al. Selection of bacteria able to control Fusarium oxysporum f. sp. radicis-lycopersici in stonewool substrate. J Appl Microbiol 2007; 102:461–471 [CrossRef][PubMed]
    [Google Scholar]
  5. de Souza R, Meyer J, Schoenfeld R, da Costa PB, Passaglia LMP. Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils. Ann Microbiol 2015; 65:951–964 [CrossRef]
    [Google Scholar]
  6. Fürnkranz M, Adam E, Müller H, Grube M, Huss H et al. Promotion of growth, health and stress tolerance of Styrian oil pumpkins by bacterial endophytes. Eur J Plant Pathol 2012; 134:509–519 [CrossRef]
    [Google Scholar]
  7. Ker K, Seguin P, Driscoll BT, Fyles JW, Smith DL. Switchgrass establishment and seeding year production can be improved by inoculation with rhizosphere endophytes. Biomass and Bioenergy 2012; 47:295–301 [CrossRef]
    [Google Scholar]
  8. Liu D, Yang Q, Ge K, Hu X, Qi G et al. Promotion of iron nutrition and growth on peanut by Paenibacillus illinoisensis and Bacillus sp. strains in calcareous soil. Braz J Microbiol 2017; 48:656–670 [CrossRef][PubMed]
    [Google Scholar]
  9. Ferchichi N, Toukabri W, Boularess M, Smaoui A, Mhamdi R et al. Isolation, identification and plant growth promotion ability of endophytic bacteria associated with lupine root nodule grown in Tunisian soil. Arch Microbiol 2019; 201:1333–1349 [CrossRef][PubMed]
    [Google Scholar]
  10. Abdallah Y, Yang M, Zhang M, Masum MMI, Ogunyemi SO et al. Plant growth promotion and suppression of bacterial leaf blight in rice by Paenibacillus polymyxa Sx3. Lett Appl Microbiol 2019; 68:423–429 [CrossRef][PubMed]
    [Google Scholar]
  11. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (ash, Farrow, Wallbanks and Collins) using a PCR probe test. proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 1993; 64:253–260 [CrossRef][PubMed]
    [Google Scholar]
  12. Beveridge TJ. Mechanism of gram variability in select bacteria. J Bacteriol 1990; 172:1609–1620 [CrossRef][PubMed]
    [Google Scholar]
  13. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  14. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 2005; 102:2567–2572 [CrossRef][PubMed]
    [Google Scholar]
  15. Sangal V, Goodfellow M, Jones AL, Schwalbe EC, Blom J et al. Next-Generation systematics: an innovative approach to resolve the structure of complex prokaryotic taxa. Sci Rep 2016; 6:38392 [CrossRef][PubMed]
    [Google Scholar]
  16. Sant’Anna FH, Ambrosini A, de Souza R, de Carvalho Fernandes G, Bach E et al. Reclassification of Paenibacillus riograndensis as a genomovar of Paenibacillus sonchi: genome-based metrics improve bacterial taxonomic classification. Front Microbiol 2017; 8:8 [CrossRef][PubMed]
    [Google Scholar]
  17. Sant'Anna FH, Ambrosini A, Guella FL, Porto RZ, Passaglia LMP. Genome-based reclassification of Paenibacillus dauci as a later heterotypic synonym of Paenibacillus shenyangensis . Int J Syst Evol Microbiol 2019; 69:177-182 [CrossRef][PubMed]
    [Google Scholar]
  18. Guella F, Porto RZ, Sant'Anna FH, Ambrosini A, Passaglia LMP. Genomic metrics analyses indicate that Paenibacillus azotofixans is not a later synonym of Paenibacillus durus . Int J Syst Evol Microbiol 2019; 69:2870–2876 [CrossRef][PubMed]
    [Google Scholar]
  19. Kim KK, Lee KC, Lee J-S. Reclassification of Paenibacillus ginsengisoli as a later heterotypic synonym of Paenibacillus anaericanus . Int J Syst Evol Microbiol 2011; 61:2101–2106 [CrossRef][PubMed]
    [Google Scholar]
  20. Pruesse E, Peplies J, Glöckner FO. Sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  21. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [CrossRef][PubMed]
    [Google Scholar]
  22. Lemoine F, Correia D, Lefort V, Doppelt-Azeroual O, Mareuil F et al. NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res 2019; 47:W260–W265 [CrossRef]
    [Google Scholar]
  23. Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 1985; 22:160–174 [CrossRef][PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [CrossRef][PubMed]
    [Google Scholar]
  25. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT.. Nucl Acids Symp Ser 1999
    [Google Scholar]
  26. Erko S, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 8:6–9
    [Google Scholar]
  27. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 2016; 44:D733–745 [CrossRef][PubMed]
    [Google Scholar]
  28. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013; 79:7696–7701 [CrossRef][PubMed]
    [Google Scholar]
  29. Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003; 13:2178–2189 [CrossRef][PubMed]
    [Google Scholar]
  30. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [CrossRef][PubMed]
    [Google Scholar]
  33. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  34. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [CrossRef][PubMed]
    [Google Scholar]
  35. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:14 [CrossRef][PubMed]
    [Google Scholar]
  36. Ten LN, Baek S-H, Im W-T, Lee M, Oh HW et al. Paenibacillus panacisoli sp. nov., a xylanolytic bacterium isolated from soil in a ginseng field in South Korea. Int J Syst Evol Microbiol 2006; 56:2677–2681 [CrossRef][PubMed]
    [Google Scholar]
  37. Roux V, Raoult D. Paenibacillus massiliensis sp. nov., Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov., isolated from blood cultures. Int J Syst Evol Microbiol 2004; 54:1049–1054 [CrossRef][PubMed]
    [Google Scholar]
  38. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2 [CrossRef][PubMed]
    [Google Scholar]
  39. Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of bacteria (2008 revision). Int J Syst Evol 2019; 69:S1–DS111
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004328
Loading
/content/journal/ijsem/10.1099/ijsem.0.004328
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error