1887

Abstract

The Gram-stain-negative, orange-pigmented, non-spore-forming, non-motile, strictly aerobic, rod-shaped bacterial strain, designated TP-CH-4, was isolated from a seamount near the Yap Trench in the tropical western Pacific. The optimal growth conditions were determined to be at pH 7–8, 25–30 °C and in the presence of 2 % (w/v) NaCl. The major respiratory quinone was MK-6. The polar lipid profile contained phosphatidylethanolamine, two unidentified aminolipids, two unidentified phospholipids and three unidentified polar lipids. The predominant cellular fatty acids were iso-C and summed feature 1 (composed of C3-OH and/or iso-CH). Phylogenetic analysis of 16S rRNA gene sequences revealed that strain TP-CH-4 was a member of the family and formed a distinct lineage. Strain TP-CH-4 displayed highest sequence similarities to KMM 3531 (95.1 %) and A11 (93.9 %). Genome sequencing revealed the strain TP-CH-4 has a genome size of 4.5 Mbp and a G+C content of 44.5 mol%. Collectively, based on phenotypic, chemotaxonomic, phylogenetic and genomic evidence, strain TP-CH-4 represents a novel species of a novel genus of the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is TP-CH-4 (=CGMCC 1.17120=KCTC 72434).

Keyword(s): Flavobacteriaceae and seamount
Funding
This study was supported by the:
  • the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Award QYZDB-SSW-DQC023)
    • Principle Award Recipient: Feng Liu
  • the Science & Technology Basic Resources Investigation Program of China (Award 2017FY100804)
    • Principle Award Recipient: De-Chao Zhang
  • the Senior User Project of RV KEXUE (Award KEXUE2019G09)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004315
2020-07-07
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/8/4569.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004315&mimeType=html&fmt=ahah

References

  1. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis STROHL and Tait 1978). Int J Syst Bacteriol 1996; 46:128–148 [View Article]
    [Google Scholar]
  2. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  3. Bernardet JF, Nakagawa Y. An introduction to the family Flavobacteriaceae . In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. (editors) The Prokaryotes 7, 3rd ed. New York: Springer; 2006 pp 455–480
    [Google Scholar]
  4. Kirchman DL. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol 2002; 39:91–100 [View Article][PubMed]
    [Google Scholar]
  5. Zhang D-C, Liu Y-X, Huang H-J, Weber K, Margesin R. Oceanihabitans sediminis gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from the Yellow Sea. Int J Syst Evol Microbiol 2016; 66:3400–3405 [View Article][PubMed]
    [Google Scholar]
  6. Fagervold SK, Intertaglia L, Batailler N, Bondoso J, Lebaron P. Saonia flava gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from coastal seawater. Int J Syst Evol Microbiol 2017; 67:3246–3250 [View Article][PubMed]
    [Google Scholar]
  7. Yoon J, Yasumoto-Hirose M, Kasai H. Frondibacter mangrovi sp. nov., a member of the family Flavobacteriaceae isolated from seawater by in situ cultivation, and emended description of Frondibacter aureus . Int J Syst Evol Microbiol 2017; 67:5013–5018 [View Article][PubMed]
    [Google Scholar]
  8. Chen C, Su Y, Tao T, Fu G, Zhang C et al. Maripseudobacter aurantiacus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a sedimentation basin. Int J Syst Evol Microbiol 2017; 67:778–783 [View Article][PubMed]
    [Google Scholar]
  9. Wang N, Xu F, Zhang X-Y, Chen X-L, Qin Q-L et al. Changchengzhania lutea gen. nov., sp. nov., a new member of the family Flavobacteriaceae isolated from Antarctic intertidal sediment. Int J Syst Evol Microbiol 2017; 67:5187–5192 [View Article][PubMed]
    [Google Scholar]
  10. Li A-Z, Lin L-Z, Zhang M-X, Zhu H-H. Antarcticibacterium flavum gen. nov., sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2018; 68:254–259 [View Article][PubMed]
    [Google Scholar]
  11. Park S, Choi J, Park J-M, Yoon J-H. Aestuariimonas insulae gen. nov., sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2018; 68:1365–1371 [View Article][PubMed]
    [Google Scholar]
  12. Zhang D-C, Liu Y-X, Huang H-J, Wu J. Pseudoalteromonas profundi sp. nov., isolated from a deep-sea seamount. Int J Syst Evol Microbiol 2016; 66:4416–4421 [View Article][PubMed]
    [Google Scholar]
  13. Zhang D-C, Liu Y-X, Huang H-J. Novosphingobium profundi sp. nov. isolated from a deep-sea seamount. Antonie van Leeuwenhoek 2017; 110:19–25 [View Article][PubMed]
    [Google Scholar]
  14. Liu J, Sun Y-W, Zhang D-D, Li S-N, Zhang D-C. Oceanisphaera marina sp. nov., isolated from a deep-sea seamount. Int J Syst Evol Microbiol 2017; 67:1996–2000 [View Article][PubMed]
    [Google Scholar]
  15. Wang Q, Sun Y-W, Liu J, Zhang D-C. Rheinheimera marina sp. nov., isolated from a deep-sea seamount. Int J Syst Evol Microbiol 2018; 68:266–270 [View Article][PubMed]
    [Google Scholar]
  16. Zhang N-X, Zhang D-C, Qiao N-H. Vibrio profundi sp. nov., isolated from a deep-sea seamount. Antonie van Leeuwenhoek 2019; 112:1603–1610 [View Article][PubMed]
    [Google Scholar]
  17. Nedashkovskaya OI, Suzuki M, Lee J-S, Lee KC, Shevchenko LS, Lee KC et al. Pseudozobellia thermophila gen. nov., sp. nov., a bacterium of the family Flavobacteriaceae, isolated from the green alga Ulva fenestrata. Int J Syst Evol Microbiol 2009; 59:806–810 [View Article][PubMed]
    [Google Scholar]
  18. Yoon B-J, Oh D-C. Spongiibacterium flavum gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from the marine sponge Halichondria oshoro, and emended descriptions of the genera Croceitalea and Flagellimonas . Int J Syst Evol Microbiol 2012; 62:1158–1164 [View Article][PubMed]
    [Google Scholar]
  19. Choi S, Lee JH, Kang JW, Choe HN, Seong CN. Flagellimonas aquimarina sp. nov., and transfer of Spongiibacterium flavum Yoon and OH 2012 and S. pacificum Gao et al. 2015 to the genus Flagellimonas Bae et al. 2007 as Flagellimonas flava comb. nov. and F. pacifica comb. nov., respectively. Int J Syst Evol Microbiol 2018; 68:3266–3272 [View Article][PubMed]
    [Google Scholar]
  20. Sambrook J, Russell DW. Molecular Cloning: a Laboratory Manual Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 2001
    [Google Scholar]
  21. Zhang D-C, Wang H-X, Liu H-C, Dong X-Z, Zhou P-J. Flavobacterium glaciei sp. nov., a novel psychrophilic bacterium isolated from the China No.1 glacier. Int J Syst Evol Microbiol 2006; 56:2921–2925 [View Article][PubMed]
    [Google Scholar]
  22. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  24. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  26. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article][PubMed]
    [Google Scholar]
  27. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [View Article][PubMed]
    [Google Scholar]
  28. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  29. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. Refseq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article][PubMed]
    [Google Scholar]
  30. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  31. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF et al. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 2011; 12:124 [View Article][PubMed]
    [Google Scholar]
  32. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  33. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  34. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992; 8:275–282 [View Article][PubMed]
    [Google Scholar]
  35. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  36. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50 Pt 5:1861–1868 [View Article][PubMed]
    [Google Scholar]
  37. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation); 2001
    [Google Scholar]
  38. Margesin R, Gander S, Zacke G, Gounot AM, Schinner F. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 2003; 7:451–458 [View Article][PubMed]
    [Google Scholar]
  39. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note 101. Newark, DE: MIDI; 1990
    [Google Scholar]
  40. Altenburgera P, Kämpferb P, Makristathisc A, Lubitza W, Bussea H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52 [View Article]
    [Google Scholar]
  41. Stolz A, Busse H-J, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57:572–576 [View Article][PubMed]
    [Google Scholar]
  42. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article][PubMed]
    [Google Scholar]
  43. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  44. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  45. Bae SS, Kwon KK, Yang SH, Lee H-S, Kim S-J et al. Flagellimonas eckloniae gen. nov., sp. nov., a mesophilic marine bacterium of the family Flavobacteriaceae, isolated from the rhizosphere of Ecklonia kurome . Int J Syst Evol Microbiol 2007; 57:1050–1054 [View Article][PubMed]
    [Google Scholar]
  46. Kang H, Kim H, Cha I, Joh K. Flagellimonas maritima sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 2020; 70:187–192 [View Article][PubMed]
    [Google Scholar]
  47. Nedashkovskaya OI, Suzuki M, Kim SB, Mikhailov VV. Kriegella aquimaris gen. nov., sp. nov., isolated from marine environments. Int J Syst Evol Microbiol 2008; 58:2624–2628 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004315
Loading
/content/journal/ijsem/10.1099/ijsem.0.004315
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error