1887

Abstract

A yellowish-brown-coloured bacterium, designated strain JGD-17, was isolated from a tidal flat of Janggu-do, Garorim bay, Taean-gun, Chungcheongbuk-do, Republic of Korea. Cells were Gram-stain-negative, aerobic, non-flagellated and long-rod-shaped. Growth was observed at 20–45 °C (optimum, 25–30 °C), at pH 6.0–10.0 (9.0) and with 1–5 % (w/v) NaCl (1–3 %). Results of 16S rRNA gene sequence analysis indicated that strain JGD-17 was closely related to SM1704 (96.1 %), CL-SS4 (95.0 %), BB-My12 (94.9 %), H19-56 (94.7 %) and 3PC125-7 (94.5 %). The ranges of values for the average nucleotide identity and digital DNA–DNA hybridization analyses with related strains were 71.3–74.1 % and 16.9–18.2 %. The genomic DNA G+C content was 41.1 mol%. Phylogenetic analysis using the neighbour-joining method showed that strain JGD-17 formed a clade with SM1704, CC-HSB-11, CSW06 and SM027. The major fatty acids were iso-C (26.9 %), iso-C G (19.5 %) and iso-C 3-OH (12.7 %). The predominant respiratory quinone was menaquinone-6. The polar lipids were phosphatidylethanolamine, an unidentified aminolipid, an unidentified phospholipid and two unidentified lipids. On the basis of phylogenetic, phenotypic and chemotaxonomic characteristics, strain JGD-17 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is JGD-17 (=KCTC 72732=KACC 21486=JCM 33817).

Funding
This study was supported by the:
  • Jae-Jin Kim , Korea University
  • Jae-Jin Kim , Ministry of Oceans and Fisheries , (Award 20170318 and 20170325)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004312
2020-07-28
2020-09-28
Loading full text...

Full text loading...

References

  1. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [CrossRef][PubMed]
    [Google Scholar]
  2. Parte AC. LPSN--list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  3. Dang Y-R, Sun Y-Y, Sun L-L, Yuan X-X, Li Y et al. Muricauda nanhaiensis sp. nov., isolated from seawater of the South China Sea. Int J Syst Evol Microbiol 2019; 69:2089–2094 [CrossRef][PubMed]
    [Google Scholar]
  4. Wang Y, Yang X, Liu J, Wu Y, Zhang X-H. Muricauda lutea sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2017; 67:1064–1069 [CrossRef][PubMed]
    [Google Scholar]
  5. Zhang Z, Gao X, Qiao Y, Wang Y, Zhang X-H. Muricauda pacifica sp. nov., isolated from seawater of the South Pacific Gyre. Int J Syst Evol Microbiol 2015; 65:4087–4092 [CrossRef][PubMed]
    [Google Scholar]
  6. Yang C, Li Y, Guo Q, Lai Q, Wei J et al. Muricauda zhangzhouensis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2013; 63:2320–2325 [CrossRef][PubMed]
    [Google Scholar]
  7. Lee S-Y, Park S, Oh T-K, Yoon J-H. Muricauda beolgyonensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2012; 62:1134–1139 [CrossRef][PubMed]
    [Google Scholar]
  8. Yoon J-H, Kang S-J, Jung Y-T, Oh T-K. Muricauda lutimaris sp. nov., isolated from a tidal flat of the Yellow Sea. Int J Syst Evol Microbiol 2008; 58:1603–1607 [CrossRef][PubMed]
    [Google Scholar]
  9. Su Y, Yang X, Wang Y, Liu Y, Ren Q et al. Muricauda marina sp. nov., isolated from marine snow of yellow Sea. Int J Syst Evol Microbiol 2017; 67:2446–2451 [CrossRef][PubMed]
    [Google Scholar]
  10. Yoon J-H, Lee M-H, Oh T-K, Park Y-H. Muricauda flavescens sp. nov. and Muricauda aquimarina sp. nov., isolated from a salt lake near Hwajinpo beach of the East Sea in Korea, and emended description of the genus Muricauda . Int J Syst Evol Microbiol 2005; 55:1015–1019 [CrossRef][PubMed]
    [Google Scholar]
  11. Kim JM, Jin HM, Jeon CO. Muricauda taeanensis sp. nov., isolated from a marine tidal flat. Int J Syst Evol Microbiol 2013; 63:2672–2677 [CrossRef][PubMed]
    [Google Scholar]
  12. Li G, Lai Q, Yan P, Shao Z. Roseovarius amoyensis sp. nov. and Muricauda amoyensis sp. nov., isolated from the Xiamen coast. Int J Syst Evol Microbiol 2019; 69:3100–3108 [CrossRef]
    [Google Scholar]
  13. Hopwood D, Bibb M, Chater K, Kieser T, Bruton C et al. Genetic manipulation of Streptomyces: a laboratory manual (Norwich, UK: the John Innes Foundation). Hranueli, D, Pigac 1985; 1:295–303
    [Google Scholar]
  14. Lane D. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics 175 Chichester, UK: John Wiley and Sons; 1991 p 115
    [Google Scholar]
  15. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  16. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  17. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  18. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  19. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  20. Meier-Kolthoff JP, Göker M, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:1–10 [CrossRef]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  22. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  23. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D et al. Toward an online repository of standard operating procedures (SOPs) for (meta)genomic annotation. OMICS 2008; 12:137–141 [CrossRef][PubMed]
    [Google Scholar]
  24. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 2017; 45:W36–W41 [CrossRef][PubMed]
    [Google Scholar]
  25. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  26. Claus D. A standardized gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [CrossRef][PubMed]
    [Google Scholar]
  27. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31:575–580 [CrossRef][PubMed]
    [Google Scholar]
  28. Phillips RW, Wiegel J, Berry CJ, Fliermans C, Peacock AD et al. Kineococcus radiotolerans sp. nov., a radiation-resistant, Gram-positive bacterium. Int J Syst Evol Microbiol 2002; 52:933–938 [CrossRef][PubMed]
    [Google Scholar]
  29. De Beer EJ, Sherwood MB. The paper-disc agar-plate method for the assay of antibiotic substances. J Bacteriol 1945; 50:459–467 [CrossRef][PubMed]
    [Google Scholar]
  30. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids 1990
    [Google Scholar]
  31. Collins MD. 11 Analysis of Isoprenoid Quinones. Methods in Microbiology Elsevier; 1985 pp 329–366
    [Google Scholar]
  32. Kroppenstedt R. Fatty Acid and Menaquinone Analysis of Actinomycetes and Related Organisms. Chemical Methods in Bacterial Systematics 1985 pp 173–199
    [Google Scholar]
  33. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  34. Arun AB, Chen W-M, Lai W-A, Chao J-H, Rekha PD et al. Muricauda lutaonensis sp. nov., a moderate thermophile isolated from a coastal hot spring. Int J Syst Evol Microbiol 2009; 59:2738–2742 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004312
Loading
/content/journal/ijsem/10.1099/ijsem.0.004312
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error