1887

Abstract

Two strains of lactic acid bacteria, designated Hs20B0-1 and Hs30E4-3, were isolated from the gut of the damp-wood termite . These strains were characterized genetically and phenotypically. Strain Hs20B0-1 was related to DSM 6634 showing 96.3 and 84.2 % sequence similarity in 16S rRNA gene and gene sequences, respectively. Strain Hs30E4-3 was related to DSM 20686 showing 94.8 and 82.2 % sequence similarity in 16S rRNA gene and gene sequences, respectively. The 16S rRNA gene sequence similarity between strains Hs20B0-1 and Hs30E4-3 was 95.7 %. Furthermore, genomic comparisons using pairwise average nucleotide identity (ANI) and digital DNA–DNA hybridization (DDH) analyses between strain Hs20B0-1 and DSM 6634 resulted in values of 73.5 and 20.1 %, respectively. Strain Hs30E4-3 had 72.8 % ANI similarity and 21.3 % DDH similarity to DSM 20686. Strains Hs20B0-1 and Hs30E4-3 had 75.4 % ANI similarity and 21.1 % DDH similarity to each other. The cell-wall peptidoglycan types of strains Hs20B0-1 and Hs30E4-3 were A4α, Lys-Asp and A3α, Lys–Thr–Ala, respectively. The two strains, Hs20B0-1 and Hs30E4-3, are distinguishable from each other and other established species phylogenetically and phenotypically. In conclusion, two novel species of the genus are proposed, namely Hs20B0-1 (=JCM 33485=DSM 110147) and Hs30E4-3 (=JCM 33486=DSM 110148), respectively.

Keyword(s): rpoB and termite
Funding
This study was supported by the:
  • Japan Agency for Medical Research and Development (Award JP19gm6010007)
    • Principle Award Recipient: Mitsuo Sakamoto
  • Japan Society for the Promotion of Science (Award 17H01447, 19H05689, 19H05679)
    • Principle Award Recipient: Moriya Ohkuma
  • Japan Society for the Promotion of Science (Award 17K07555, 19K06334)
    • Principle Award Recipient: Satoko Noda
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004309
2020-07-02
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/8/4515.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004309&mimeType=html&fmt=ahah

References

  1. Cho S-L, Nam S-W, Yoon J-H, Lee J-S, Sukhoom A et al. Lactococcus chungangensis sp. nov., a lactic acid bacterium isolated from activated sludge foam. Int J Syst Evol Microbiol 2008; 58:1844–1849 [View Article][PubMed]
    [Google Scholar]
  2. Chen Y-S, Otoguro M, Lin Y-H, Pan S-F, Ji S-H et al. Lactococcus formosensis sp. nov., a lactic acid bacterium isolated from yan-tsai-shin (fermented broccoli stems). Int J Syst Evol Microbiol 2014; 64:146–151 [View Article][PubMed]
    [Google Scholar]
  3. Meucci A, Zago M, Rossetti L, Fornasari ME, Bonvini B et al. Lactococcus hircilactis sp. nov. and Lactococcus laudensis sp. nov., isolated from milk. Int J Syst Evol Microbiol 2015; 65:2091–2096 [View Article][PubMed]
    [Google Scholar]
  4. Noda S, Sakamoto M, Aihara C, Yuki M, Katsuhara M et al. Lactococcus termiticola sp. nov., isolated from the gut of the wood-feeding higher termite Nasutitermes takasagoensis . Int J Syst Evol Microbiol 2018; 68:3832–3836 [View Article][PubMed]
    [Google Scholar]
  5. Yuki M, Sakamoto M, Nishimura Y, Ohkuma M. Lactococcus reticulitermitis sp. nov., isolated from the gut of the subterranean termite Reticulitermes speratus . Int J Syst Evol Microbiol 2018; 68:596–601 [View Article][PubMed]
    [Google Scholar]
  6. Goodman LB, Lawton MR, Franklin-Guild RJ, Anderson RR, Schaan L et al. Lactococcus petauri sp. nov., isolated from an abscess of a sugar glider. Int J Syst Evol Microbiol 2017; 67:4397–4404 [View Article][PubMed]
    [Google Scholar]
  7. Pérez T, Balcázar JL, Peix A, Valverde A, Velázquez E et al. Lactococcus lactis subsp. tructae subsp. nov. isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). Int J Syst Evol Microbiol 2011; 61:1894–1898 [View Article][PubMed]
    [Google Scholar]
  8. Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K et al. Symbiont-mediated insecticide resistance. Proc Natl Acad Sci U S A 2012; 109:8618–8622 [View Article][PubMed]
    [Google Scholar]
  9. Tsuchida T, Koga R, Fukatsu T. Host plant specialization governed by facultative symbiont. Science 2004; 303:303 [View Article][PubMed]
    [Google Scholar]
  10. Noda S, Shimizu D, Yuki M, Kitade O, Ohkuma M. Host-symbiont cospeciation of termite-gut cellulolytic protists of the genera Teranympha and Eucomonympha and their Treponema endosymbionts. Microbes Environ 2018; 33:26–33 [View Article][PubMed]
    [Google Scholar]
  11. Ohbayashi T, Itoh H, Lachat J, Kikuchi Y, Mergaert P et al. Burkholderia gut symbionts associated with European and Japanese populations of the DOCK bug Coreus marginatus (Coreoidea: Coreidae). Microbes Environ 2019; 34:219–222 [View Article][PubMed]
    [Google Scholar]
  12. Utami YD, Kuwahara H, Murakami T, Morikawa T, Sugaya K et al. Phylogenetic diversity and single-cell genome analysis of "Melainabacteria", a non-photosynthetic cyanobacterial group, in the termite gut. Microbes Environ 2018; 33:50–57 [View Article][PubMed]
    [Google Scholar]
  13. Brune A, Ohkuma M. Role of the termite gut microbiota in symbiotic digestion. In Bignell DE, Roisin Y, Lo N. (editors) Biology of Termites: A Modern Synthesis New York: Springer; 2011 pp 439–475
    [Google Scholar]
  14. Brune A. Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 2014; 12:168–180 [View Article][PubMed]
    [Google Scholar]
  15. Bauer S, Tholen A, Overmann J, Brune A. Characterization of abundance and diversity of lactic acid bacteria in the hindgut of wood- and soil-feeding termites by molecular and culture-dependent techniques. Arch Microbiol 2000; 173:126–137 [View Article][PubMed]
    [Google Scholar]
  16. Yan Yang S, Zheng Y, Huang Z, Min Wang X, Yang H. Lactococcus nasutitermitis sp. nov. isolated from a termite gut. Int J Syst Evol Microbiol 2016; 66:518–522 [View Article][PubMed]
    [Google Scholar]
  17. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article]
    [Google Scholar]
  18. Stecher G, Tamura K, Kumar S. Molecular evolutionary genetics analysis (MEGA) for macOS. Mol Biol Evol 2020; 37:1237–1239 [View Article][PubMed]
    [Google Scholar]
  19. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  20. Noda S, Aihara C, Yuki M, Ohkuma M. Draft genome sequence of Lactococcus sp. strain NtB2 (JCM 32569), isolated from the gut of the higher termite Nasutitermes takasagoensis . Genome Announc 2018; 6:e00445–18 [View Article][PubMed]
    [Google Scholar]
  21. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  22. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  23. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  24. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  25. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  26. Noda S, Inoue T, Hongoh Y, Kawai M, Nalepa CA et al. Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ Microbiol 2006; 8:11–20 [View Article][PubMed]
    [Google Scholar]
  27. Heo J, Cho H, Tamura T, Saitou S, Park K et al. Lactococcus allomyrinae sp. nov., isolated from gut of larvae of Allomyrina dichotoma . Int J Syst Evol Microbiol 2019; 69:3682–3688 [View Article][PubMed]
    [Google Scholar]
  28. Holdeman L, Cato E, Moore W. Anaerobic Laboratory Manual, 4th ed. Blacksburg, VA: Virginia polytechnic Institute and State University; 1977
    [Google Scholar]
  29. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586 [View Article][PubMed]
    [Google Scholar]
  30. Kuykendall LD, Roy MA, O'NEILL JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  31. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  32. Williams AM, Fryer JL, Collins MD. Lactococcus piscium sp. nov. a new Lactococcus species from salmonid fish. FEMS Microbiol Lett 1990; 68:109–113 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004309
Loading
/content/journal/ijsem/10.1099/ijsem.0.004309
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error