1887

Abstract

An alkali lignin-degrading, Gram-stain-negative, rod-shaped, non-motile and facultatively anaerobic bacterium, designated BM_7, was isolated from mangrove sediment of the supralittoral zone in the Jiulong river estuary, PR China. The cells of strain BM_7 were 0.4–0.6 µm wide and 1.0–8.5 µm long. Oxidase and catalase activities were positive. Strain BM_7 could grow at 10–37 °C (optimum, 25–28 °C), at pH 6.0–8.0 (optimum, pH 7.0) and in the presence of 0.5–6 % (w/v) NaCl (optimum, 2%). Phylogenetic analysis of 16S rRNA gene sequences indicated that strain BM_7 belonged to the genus of the family . It showed the highest similarity to JCM 19152 (96.8 %), followed by KCTC 42253 (96.1%). The values of average nucleotide identity and DNA–DNA hybridization were calculated as 76.9, 24.3 and 76.1, 17.4 % between strain BM_7 with JCM 19152 and KCTC 42253, respectively. The major respiratory quinone of strain BM_7 was MK-7. The polar lipids were detected as phosphatidylethanolamine, three unidentified phospholipids and four unidentified aminolipids. The dominant fatty acids consisted of iso-C, anteiso-C, C ω6, iso-C 3-OH, C 6 C 3-OH and C. The genome size of strain BM_7 is 5.6 Mb, with G+C content of 43.4 mol%. Based on the phylogenetic and phenotypic characteristics, strain BM_7 was considered to represent a novel species of the genus , and the name sp. nov. is proposed. The type strain is BM_7 (=MCCC 1A15882=KCTC 72696).

Funding
This study was supported by the:
  • Xiamen Ocean Economic Innovation and Development Demonstration Project (Award 16PZP001SF16)
    • Principle Award Recipient: Zongze Shao
  • COMRA program (Award No. DY135-B2-01)
    • Principle Award Recipient: Zongze Shao
  • National Infrastructure of Microbial Resources of China (Award NMRC-2020-9)
    • Principle Award Recipient: Zongze Shao
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004305
2020-06-29
2021-05-15
Loading full text...

Full text loading...

References

  1. Chen Q, Zhao Q, Li J, Jian S, Ren H. Mangrove succession enriches the sediment microbial community in South China. Sci Rep 2016; 6:27468 [CrossRef][PubMed]
    [Google Scholar]
  2. Leung JYS. Habitat heterogeneity affects ecological functions of macrobenthic communities in a mangrove: implication for the impact of restoration and afforestation. Glob Ecol Conserv 2015; 4:423–433 [CrossRef]
    [Google Scholar]
  3. Mohd-Azlan J, Noske R, Lawes M. The role of habitat heterogeneity in structuring mangrove bird assemblages. Diversity 2015; 7:118–136 [CrossRef]
    [Google Scholar]
  4. Kristensen E, Bouillon S, Dittmar T, Marchand C. Organic carbon dynamics in mangrove ecosystems: a review. Aquat Bot 2008; 89:201–219 [CrossRef]
    [Google Scholar]
  5. Bashan Y, Holguin G. Azospirillum – plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 1997; 43:103–121 [CrossRef]
    [Google Scholar]
  6. Huang X-F, Liu YJ, Dong J-D, Qu L-Y, Zhang Y-Y et al. Mangrovibacterium diazotrophicum gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from a mangrove sediment, and proposal of Prolixibacteraceae fam. nov. Int J Syst Evol Microbiol 2014; 64:875–881 [CrossRef][PubMed]
    [Google Scholar]
  7. Wu W-J, Zhou Y-X, Liu Y, Chen G-J, Du Z-J. Mangrovibacterium marinum sp. nov., isolated from a coastal sediment. Antonie Van Leeuwenhoek 2015; 107:1583–1589 [CrossRef][PubMed]
    [Google Scholar]
  8. Holmes DE, Nevin KP, Woodard TL, Peacock AD, Lovley DR. Prolixibacter bellariivorans gen. nov., sp. nov., a sugar-fermenting, psychrotolerant anaerobe of the phylum Bacteroidetes, isolated from a marine-sediment fuel cell. Int J Syst Evol Microbiol 2007; 57:701–707 [CrossRef][PubMed]
    [Google Scholar]
  9. Irgens RL. Meniscus, a new genus of aerotolerant, Gas-Vacuolated bacteria. Int J Syst Bacteriol 1977; 27:38–43 [CrossRef]
    [Google Scholar]
  10. Iino T, Mori K, Itoh T, Kudo T, Suzuki K-I et al. Description of Mariniphaga anaerophila gen. nov., sp. nov., a facultatively aerobic marine bacterium isolated from tidal flat sediment, reclassification of the Draconibacteriaceae as a later heterotypic synonym of the Prolixibacteraceae and description of the family Marinifilaceae fam. nov. Int J Syst Evol Microbiol 2014; 64:3660–3667 [CrossRef][PubMed]
    [Google Scholar]
  11. Qu L, Zhu F, Hong X, Gao W, Chen J et al. Sunxiuqinia elliptica gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from sediment in a sea cucumber farm. Int J Syst Evol Microbiol 2011; 61:2885–2889 [CrossRef][PubMed]
    [Google Scholar]
  12. Du Z-J, Wang Y, Dunlap C, Rooney AP, Chen G-J. Draconibacterium orientale gen. nov., sp. nov., isolated from two distinct marine environments, and proposal of Draconibacteriaceae fam. nov. Int J Syst Evol Microbiol 2014; 64:1690–1696 [CrossRef][PubMed]
    [Google Scholar]
  13. Wu W-J, Liu Q-Q, Chen G-J, Du Z-J. Roseimarinus sediminis gen. nov., sp. nov., a facultatively anaerobic bacterium isolated from coastal sediment. Int J Syst Evol Microbiol 2015; 65:2260–2264 [CrossRef][PubMed]
    [Google Scholar]
  14. Liu Q-Q, Li X-L, Rooney AP, Du Z-J, Chen G-J. Tangfeifania diversioriginum gen. nov., sp. nov., a representative of the family Draconibacteriaceae . Int J Syst Evol Microbiol 2014; 64:3473–3477 [CrossRef][PubMed]
    [Google Scholar]
  15. Zhou L-Y, Yu Z-L, Xu W, Mu D-S, Du Z-J. Maribellus luteus gen. nov., sp. nov., a marine bacterium in the family Prolixibacteraceae isolated from coastal seawater. Int J Syst Evol Microbiol 2019; 69:2388–2394 [CrossRef][PubMed]
    [Google Scholar]
  16. Halebian S, Harris B, Finegold SM, Rolfe RD. Rapid method that AIDS in distinguishing gram-positive from gram-negative anaerobic bacteria. J Clin Microbiol 1981; 13:444–448 [CrossRef][PubMed]
    [Google Scholar]
  17. Huang Z, Dong C, Shao Z. Paraphotobacterium marinum gen. nov., sp. nov., a member of the family Vibrionaceae, isolated from surface seawater. Int J Syst Evol Microbiol 2016; 66:3050–3056 [CrossRef][PubMed]
    [Google Scholar]
  18. Wilson KH, Blitchington RB, Greene RC. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol 1990; 28:1942–1946 [CrossRef][PubMed]
    [Google Scholar]
  19. Chun J, Lee J-H, Jung Y, Kim M, Kim S et al. Eztaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 2007; 57:2259–2261 [CrossRef][PubMed]
    [Google Scholar]
  20. McGinnis S, Madden TL. Blast: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 2004; 32:W20–W25 [CrossRef][PubMed]
    [Google Scholar]
  21. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  23. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [CrossRef]
    [Google Scholar]
  24. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  25. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  27. Kates M, Work TS, Work E. Techniques of lipidology: isolation, analysis and identification of lipids. North-Holland Amsterdam 1972; 350:
    [Google Scholar]
  28. Lara MA, Rodríguez-Malaver AJ, Rojas OJ, Holmquist O, González AM et al. Black liquor lignin biodegradation by Trametes elegans . Int Biodeterior Biodegrad 2003; 52:167–173 [CrossRef]
    [Google Scholar]
  29. Billings AF, Fortney JL, Hazen TC, Simmons B, Davenport KW et al. Genome sequence and description of the anaerobic lignin-degrading bacterium Tolumonas lignolytica sp. nov. Stand Genomic Sci 2015; 10:106 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004305
Loading
/content/journal/ijsem/10.1099/ijsem.0.004305
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error