1887

Abstract

A strictly anaerobic bacterial strain designated EA1 was isolated from an enrichment culture inoculated with biogas reactor content. Cells of strain EA1 are spore-forming rods (1–3×0.4–0.8 µm) and stain Gram-negative, albeit they possess a Gram-positive type of cell-wall ultrastructure. Growth of strain EA1 was observed at 30 and 37 °C and within a pH range of pH 5–9. The major components recovered in the fatty acid fraction were C, C, C DMA (dimethyl acetal) and C 7. Strain EA1 fermented several mono- and disaccharides. Metabolic end products from fructose were acetate, butyrate, caproate and lactate. Furthermore, ethanol, CO and H were identified as products. The genome consists of a chromosome (3.9 Mbp) with 3797 predicted protein-encoding genes and a G+C content of 51.25 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain EA1 represents a novel taxon within the family . The most closely related type strains of EA1, based on 16S rRNA gene sequence identity, are BS-1 (94.9 %), [] DSM 753 (93.8 %), [] DSM 1294 (91.7 %) and ATCC 27255 (91.0 %). Further phenotypic characteristics of strain EA1 differentiate it from related, validly described bacterial species. Strain EA1 represents a novel genus and novel species within the family . The proposed name is gen. nov., sp. nov. The type strain is EA1 (DSM 107079=JCM 33110).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004283
2020-06-25
2020-07-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/10.1099/ijsem.0.004283/ijsem004283.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004283&mimeType=html&fmt=ahah

References

  1. Angenent LT, Richter H, Buckel W, Spirito CM, Steinbusch KJJ et al. Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals. Environ Sci Technol 2016; 50:2796–2810 [CrossRef]
    [Google Scholar]
  2. Weimer PJ, Stevenson DM. Isolation, characterization, and quantification of Clostridium kluyveri from the bovine rumen. Appl Microbiol Biotechnol 2012; 94:461–466 [CrossRef][PubMed]
    [Google Scholar]
  3. Kim B-C, Seung Jeon B, Kim S, Kim H, Um Y et al. Caproiciproducens galactitolivorans gen. nov., sp. nov., a bacterium capable of producing caproic acid from galactitol, isolated from a wastewater treatment plant. Int J Syst Evol Microbiol 2015; 65:4902–4908 [CrossRef]
    [Google Scholar]
  4. Choi K, Jeon BS, Kim B-C, Oh M-K, Um Y et al. In situ biphasic extractive fermentation for hexanoic acid production from sucrose by Megasphaera elsdenii NCIMB 702410. Appl Biochem Biotechnol 2013; 171:1094–1107 [CrossRef]
    [Google Scholar]
  5. Elsden SR, Lewis D. The production of fatty acids by a Gram-negative coccus. Biochem J 1953; 55:183–189 [CrossRef]
    [Google Scholar]
  6. Engelmann U, Weiss N. Megasphaera cerevisiae sp. nov.: a new Gram-negative obligately anaerobic coccus isolated from spoiled beer. Syst Appl Microbiol 1985; 6:287–290 [CrossRef]
    [Google Scholar]
  7. Zhu X, Zhou Y, Wang Y, Wu T, Li X et al. Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6. Biotechnol Biofuels 2017; 10:102 [CrossRef]
    [Google Scholar]
  8. Genthner BR, Davis CL, Bryant MP. Features of rumen and sewage sludge strains of Eubacterium limosum, a methanol- and H2-CO2-utilizing species. Appl Environ Microbiol 1981; 42:12–19 [CrossRef]
    [Google Scholar]
  9. Lindley ND, Loubiere P, Pacaud S, Mariotto C, Goma G. Novel products of the acidogenic fermentation of methanol during growth of Eubacterium limosum in the presence of high concentrations of organic acids. Microbiology 1987; 133:3557–3563 [CrossRef]
    [Google Scholar]
  10. Phillips JR, Atiyeh HK, Tanner RS, Torres JR, Saxena J et al. Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: medium development and culture techniques. Bioresour Technol 2015; 190:114–121 [CrossRef]
    [Google Scholar]
  11. Ramió-Pujol S, Ganigué R, Bañeras L, Colprim J. Incubation at 25 °C prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7. Bioresour Technol 2015; 192:296–303 [CrossRef]
    [Google Scholar]
  12. Barker HA. The production of caproic and butyric acids by the methane fermentation of ethyl alcohol. Archiv. Mikrobiol. 1937; 8:415–421 [CrossRef]
    [Google Scholar]
  13. Seedorf H, Fricke WF, Veith B, Bruggemann H, Liesegang H et al. The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci U S A 2008; 105:2128–2133 [CrossRef]
    [Google Scholar]
  14. Cavalcante WdeA, Leitão RC, Gehring TA, Angenent LT, Santaella ST. Anaerobic fermentation for n-caproic acid production: a review. Process Biochemistry 2017; 54:106–119 [CrossRef]
    [Google Scholar]
  15. Marx H, Graf AB, Tatto NE, Thallinger GG, Mattanovich D et al. Genome sequence of the ruminal bacterium Megasphaera elsdenii. J Bacteriol 2011; 193:5578–5579 [CrossRef]
    [Google Scholar]
  16. Kutumbaka KK, Pasmowitz J, Mategko J, Reyes D, Friedrich A et al. DraftGenome Sequence of the Beer Spoilage Bacterium Megasphaera cerevisiae Strain PAT1 T. Genome Announc 2015; 3:e01045–15 [CrossRef]
    [Google Scholar]
  17. Song Y, Cho B-K. Draft genome sequence of chemolithoautotrophic acetogenic butanol-producing Eubacterium limosum ATCC 8486. Genome Announc 2015; 3:e01564–14 [CrossRef]
    [Google Scholar]
  18. Bruant G, Lévesque M-J, Peter C, Guiot SR, Masson L. Genomic analysis of carbon monoxide utilization and butanol production by Clostridium carboxidivorans strain P7T. PLoS One 2010; 5:e13033 [CrossRef]
    [Google Scholar]
  19. Tao Y, Zhu X, Wang H, Wang Y, Li X et al. Complete genome sequence of Ruminococcaceae bacterium CPB6: a newly isolated culture for efficient N -caproic acid production from lactate. J Biotechnol 2017; 259:91–94 [CrossRef]
    [Google Scholar]
  20. Bengelsdorf FR, Poehlein A, Daniel R, Dürre P. Genome sequence of the caproic acid-producing bacterium Caproiciproducens galactitolivorans BS-1T (JCM 30532). Microbiol Resour Announc 2019; 8:e00346–19 [CrossRef]
    [Google Scholar]
  21. Hackmann TJ, Firkins JL. Electron transport phosphorylation in rumen butyrivibrios: unprecedented ATP yield for glucose fermentation to butyrate. Front Microbiol 2015; 6:622 [CrossRef]
    [Google Scholar]
  22. Buckel W, Thauer RK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim Biophys Acta BBA - Bioenerg 1827; 2013:94–113
    [Google Scholar]
  23. Wasewar KL, Shende DZ. Reactive extraction of caproic acid using tri- n -butyl phosphate in hexanol, octanol, and decanol. J Chem Eng Data 2011; 56:288–297 [CrossRef]
    [Google Scholar]
  24. Tanner RS. Cultivation of bacteria and fungi. In Hurst CJ, Lipson DA, Garland JL, Stetzenbach LD, Mills AL et al. (editors) Manual of Environmental Microbiology, 3rd ed. Washington, DC: American Society of Microbiology; 2007 pp pp69–78
    [Google Scholar]
  25. Leang C, Ueki T, Nevin KP, Lovley DR. A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen. Appl Environ Microbiol 2013; 79:1102–1109 [CrossRef]
    [Google Scholar]
  26. Grootscholten TIM, Strik DPBTB, Steinbusch KJJ, Buisman CJN, Hamelers HVM. Two-Stage medium chain fatty acid (MCFA) production from municipal solid waste and ethanol. Appl Energy 2014; 116:223–229 [CrossRef]
    [Google Scholar]
  27. Zhu X, Tao Y, Liang C, Li X, Wei N et al. The synthesis of n-caproate from lactate: a new efficient process for medium-chain carboxylates production. Sci Rep 2015; 5:14360 [CrossRef]
    [Google Scholar]
  28. Kucek LA, Nguyen M, Angenent LT. Conversion of L-lactate into n-caproate by a continuously fed reactor microbiome. Water Res 2016; 93:163–171 [CrossRef]
    [Google Scholar]
  29. Marone A, Trably E, Carrère H, Prompsy P, Guillon F et al. Enhancement of corn stover conversion to carboxylates by extrusion and biotic triggers in solid-state fermentation. Appl Microbiol Biotechnol 2019; 103:489–503 [CrossRef]
    [Google Scholar]
  30. Nzeteu CO, Trego AC, Abram F, O’Flaherty V. Reproducible, high-yielding, biological caproate production from food waste using a single-phase anaerobic reactor system. Biotechnol Biofuels 2018; 11:108 [CrossRef]
    [Google Scholar]
  31. Tindall BJ. The names Hungateiclostridium Zhang et al. 2018, Hungateiclostridium thermocellum (Viljoen et al. 1926) Zhang et al. 2018, Hungateiclostridium cellulolyticum (Patel et al. 1980) Zhang et al. 2018, Hungateiclostridium aldrichii (Yang et al. 1990) Zhang et al. 2018, Hungateiclostridium alkalicellulosi (Zhilina et al. 2006) Zhang et al. 2018, Hungateiclostridium clariflavum (Shiratori et al. 2009) Zhang et al. 2018, Hungateiclostridium straminisolvens (Kato et al. 2004) Zhang et al. 2018 and Hungateiclostridium saccincola (Koeck et al. 2016) Zhang et al. 2018 contravene rule 51b of the International Code of Nomenclature of prokaryotes and require replacement names in the genus Acetivibrio Patel et al. 1980. Int J Syst Evol Microbiol 2019; 69:3927–3932 [CrossRef]
    [Google Scholar]
  32. Agarwala R, Barrett T, Beck J, Benson DA et al.NCBI Resource Coordinators Database resources of the National center for biotechnology information. Nucleic Acids Res 2018; 46:8–13
    [Google Scholar]
  33. Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 2014; 42:633–642
    [Google Scholar]
  34. Katoh K, Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform 2008; 9:286–298 [CrossRef]
    [Google Scholar]
  35. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61:539–542 [CrossRef]
    [Google Scholar]
  36. Ransom-Jones E, McDonald JE. Draft genome sequence of Clostridium sp. strain W14A isolated from a cellulose-degrading biofilm in a landfill leachate microcosm. Genome Announc 2016; 4:e00985–16 [CrossRef]
    [Google Scholar]
  37. Rinland ME, Gómez MA. Isolation and characterization of onion degrading bacteria from onion waste produced in South Buenos Aires Province, Argentina. World J Microbiol Biotechnol 2015; 31:487–497 [CrossRef]
    [Google Scholar]
  38. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [CrossRef]
    [Google Scholar]
  39. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 2014; 30:2114–2120 [CrossRef]
    [Google Scholar]
  40. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef]
    [Google Scholar]
  41. García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S et al. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 2012; 28:2678–2679 [CrossRef]
    [Google Scholar]
  42. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [CrossRef]
    [Google Scholar]
  43. Boynton ZL, Bennet GN, Rudolph FB. Cloning, sequencing, and expression of clustered genes encoding beta-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase, and butyryl-CoA dehydrogenase from Clostridium acetobutylicum ATCC 824. J Bacteriol 1996; 178:3015–3024 [CrossRef][PubMed]
    [Google Scholar]
  44. Westphal L, Wiechmann A, Baker J, Minton NP, Müller V. The Rnf Complex Is an Energy-Coupled Transhydrogenase Essential To Reversibly Link Cellular NADH and Ferredoxin Pools in the Acetogen Acetobacterium woodii. J Bacteriol 2018; 200:e00357–18 [CrossRef]
    [Google Scholar]
  45. Schuchmann K, Müller V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 2014; 12:809–821 [CrossRef]
    [Google Scholar]
  46. Weghoff MC, Bertsch J, Müller V. A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ Microbiol 2015; 17:670–677 [CrossRef]
    [Google Scholar]
  47. Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res 2019; 47:D666–D677 [CrossRef]
    [Google Scholar]
  48. Medlar AJ, Törönen P, Holm L. AAI-profiler: fast proteome-wide exploratory analysis reveals taxonomic identity, misclassification and contamination. Nucleic Acids Res 2018; 46:W479–W485 [CrossRef]
    [Google Scholar]
  49. The UniProt Consortium UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 2019; 47:D506–D515 [CrossRef]
    [Google Scholar]
  50. Simbert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGM, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology, 2nd ed. Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  51. Cheng KJ, Costerton JW. Ultrastructure of Butyrivibrio fibrisolvens: a Gram-positive bacterium. J Bacteriol 1977; 129:1506–1512 [CrossRef]
    [Google Scholar]
  52. Van Gylswyk NO, Morris EJ, Els HJ. Sporulation and cell wall structure of Clostridium polysaccharolyticum comb.nov. (formerly Fusobacterium polysaccharolyticum). Microbiology 1980; 121:491–493 [CrossRef]
    [Google Scholar]
  53. Warnick TA, Methé BA, Leschine SB. Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol 2002; 52:1155–1160 [CrossRef]
    [Google Scholar]
  54. Gottschalk G. Bacterial Fermentation. In Gottschalk G. editor Bacterial Metabolism, 2nd ed. New York, NY: Springer New York; 1986 pp 210–280
    [Google Scholar]
  55. Bahl H, Andersch W, Gottschalk G. Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat. European J Appl Microbiol Biotechnol 1982; 15:201–205 [CrossRef]
    [Google Scholar]
  56. Chen S, Dong X. Acetanaerobacterium elongatum gen. nov., sp. nov., from paper mill waste water. Int J Syst Evol Microbiol 2004; 54:2257–2262 [CrossRef]
    [Google Scholar]
  57. Cato EP, George WL, Finegold SM. Genus Clostridium. In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology, 1986 2 Baltimore: Williams & Wilkins; pp 1141–1200
    [Google Scholar]
  58. Moore WEC, Johnson JL, Holdeman LV. Emendation of Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus. Int J Syst Bacteriol 1976; 26:238–252 [CrossRef]
    [Google Scholar]
  59. Moore WEC, Cato EP, Holdeman LV. Ruminococcus bromii sp. nov. and emendation of the description of Ruminococcus sijpesteinSijpestein. Int J Syst Bacteriol 1972; 22:78–80 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004283
Loading
/content/journal/ijsem/10.1099/ijsem.0.004283
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error