1887

Abstract

Two yellow-pigmented, Gram-stain-negative, aerobic, rod-shaped bacteria were isolated from the water of the hypersaline Chaka Salt Lake (strain SaA2.12) and sediment of Qinghai Lake (strain LaA7.5), PR China. According to the 16S rRNA phylogeny, the isolates belong to the genus , showing the highest 16S rRNA sequence similarities to SM1502(97.6–97.7 %) and XIN-1(96.5–96.6 %). Moreover, strains SaA2.12 and LaA7.5 showed 99.73 % 16S rRNA sequence similarity to each other. Major fatty acids, respiratory quinones and polar lipids detected in these isolates were iso-C, menaquinone-6 and phosphatidylethanolamine, respectively. Strains SaA2.12 and LaA7.5 showed significant unique characteristics between them as well as between the closest phylogenetic members. The highest digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) values between SaA2.12 and its closest neighbours were 25.3 and 82.8 %, respectively; whereas these values (highest) between LaA7.5 and its closest members were 25.2 and 82.8 %, respectively. The dDDH and ANI values between strains SaA2.12 and LaA7.5 were calculated as 75.9 and 97.2 %, respectively. Therefore, based on polyphasic data, we propose that strain SaA2.12 represents a novel species with the name sp. nov., with the type strain SaA2.12 (=KCTC 72220=MCCC 1K03618) and strain LaA7.5 as a subspecies within novel with the name subsp. subsp. nov., with the type strain LaA7.5 (=KCTC 72806=MCCC 1K04372). These propositions automatically create subsp. subsp. nov. with SaA2.12 (=KCTC 72220=MCCC 1K03618) as the type strain.

Funding
This study was supported by the:
  • Natural Science Foundation of Zhejiang Province (Award LY18D060003)
    • Principle Award Recipient: Pin-Mei Wang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004281
2020-06-22
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/7/4250.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004281&mimeType=html&fmt=ahah

References

  1. Bernardet J-F, Bowman JP. The Genus Flavobacterium . In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. (editors) The Prokaryotes: Volume 7: Proteobacteria: Delta, Epsilon Subclass New York, NY: Springer New York; 2006 pp 481–531
    [Google Scholar]
  2. Ludwig W, Klenk H. A phylogenetic backbone and taxonomic framework for prokaryotic systematics. In Boone DR, Castenholz RW. (editors) The Archaea and the Deeply Branching and Phototrophic Bacteria New York: Springer-Verlag; 2001
    [Google Scholar]
  3. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM. Genus II. Flavobacterium gen. nov. In Whitman W. editor Bergey’s Manual of Determinative Bacteriology USA: Williams & Wilkins, Baltimore; 1923 pp 97–117
    [Google Scholar]
  4. Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis STROHL and Tait 1978). Int J Syst Bacteriol 1996; 46:128–148 [View Article]
    [Google Scholar]
  5. Dong K, Chen F, Du Y, Wang G. Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense. Int J Syst Evol Microbiol 2013; 63:886–892 [View Article][PubMed]
    [Google Scholar]
  6. Kang JY, Chun J, Jahng KY. Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium . Int J Syst Evol Microbiol 2013; 63:1633–1638 [View Article][PubMed]
    [Google Scholar]
  7. Kuo I, Saw J, Kapan DD, Christensen S, Kaneshiro KY et al. Flavobacterium akiainvivens sp. nov., from decaying wood of Wikstroemia oahuensis, Hawai'i, and emended description of the genus Flavobacterium . Int J Syst Evol Microbiol 2013; 63:3280–3286 [View Article][PubMed]
    [Google Scholar]
  8. Frankland GC, Frankland PF. Über einige typische Mikroorganismen im Wasser und im Boden. Zeitschr f Hygiene 1889; 6:373–400
    [Google Scholar]
  9. Liu Q, Siddiqi MZ, Liu Q, Huq MA, Lee SY et al. Flavobacterium hankyongi sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2018; 68:1732–1736 [View Article][PubMed]
    [Google Scholar]
  10. Debnath SC, Miyah AMA, Chen C, Sheng H, Xu X-W et al. Flavobacterium zhairuonensis sp. nov., a gliding bacterium isolated from marine sediment of the East China Sea. J Microbiol 2019; 57:1065–1072 [View Article][PubMed]
    [Google Scholar]
  11. Bernardet J-F, Bowman JP et al. Genus I. Flavobacterium Bergey, Harrison, Breed, Hammer and Huntoon 1923, 97AL emend. Bernardet, Segers, Vancanneyt, Berthe, Kersters and Vandamme 1996, 139. In Krieg N, Staley J, Brown D, Hedlund B, Paster B et al. (editors) Bergey's Manual of Systematic Bacteriology: The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes 2010 New York: Springer; pp 112–154
    [Google Scholar]
  12. Jiang H, Dong H, Zhang G, Yu B, Chapman LR et al. Microbial diversity in water and sediment of lake Chaka, an athalassohaline lake in northwestern China. Appl Environ Microbiol 2006; 72:3832–3845 [View Article][PubMed]
    [Google Scholar]
  13. Yang J, Ma Li'an, Jiang H, Wu G, Dong H. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan lakes. Sci Rep 2016; 6:25078 [View Article][PubMed]
    [Google Scholar]
  14. Jiang H, Dong H, Yu B, Liu X, Li Y et al. Microbial response to salinity change in lake Chaka, a hypersaline lake on Tibetan Plateau. Environ Microbiol 2007; 9:2603–2621 [View Article][PubMed]
    [Google Scholar]
  15. Zhang G, Xie H, Duan S, Tian M, Yi D. Water level variation of Lake Qinghai from satellite and in situ measurements under climate change. J Appl Remote Sens 2011; 5:053532 [View Article]
    [Google Scholar]
  16. Li D-D, Liu C, Zhang Y-Q, Wang X-J, Wang N et al. Flavobacterium arcticum sp. nov., isolated from Arctic seawater. Int J Syst Evol Microbiol 2017; 67:1070–1074 [View Article][PubMed]
    [Google Scholar]
  17. Barrow GI, Feltham RKA. Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge, New York: Cambridge University Press; 1993
    [Google Scholar]
  18. Bernardet J-F, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  19. Lanyi B. Classical and rapid identification methods for medically important bacteria. Method Microbiol 1987; 19:1–67
    [Google Scholar]
  20. Smibert R, Krieg N. Phenotypic characterization. In Gerhardt PM, RGE; Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  21. Kurup VP, Babcock JB. Use of casein, tyrosine, and hypoxanthine in the identification of nonfermentative gram-negative bacilli. Med Microbiol Immunol 1979; 167:71–75 [View Article][PubMed]
    [Google Scholar]
  22. Chen C, Su Y, Tao T, Fu G, Zhang C et al. Maripseudobacter aurantiacus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a sedimentation basin. Int J Syst Evol Microbiol 2017; 67:778–783 [View Article][PubMed]
    [Google Scholar]
  23. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–175
    [Google Scholar]
  24. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  25. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  26. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  29. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  30. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  31. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  32. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  33. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  34. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial Systematics. Method Microbiol 1987; 19:161–207
    [Google Scholar]
  35. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  36. Debnath SC, Chen C, Liu S-X, Di Y-N, Zheng D-Q et al. Flavobacterium sharifuzzamanii sp. nov., Isolated from the Sediments of the East China Sea. Curr Microbiol 2019; 76:297–303 [View Article][PubMed]
    [Google Scholar]
  37. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE, USA: MIDI Inc,; 1990
    [Google Scholar]
  38. Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A et al. Assembling Genomes and Mini-metagenomes from Highly Chimeric Reads. In Deng M, Jiang R, Sun F, Zhang X. (editors) Research in Computational Molecular Biology RECOMB 2013 Lecture Notes in Computer Science (Research in Computational Molecular Biology Berlin, Heidelberg: Springer; 2013 pp 158–170
    [Google Scholar]
  39. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  40. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article][PubMed]
    [Google Scholar]
  41. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 2017; 45:W36–W41 [View Article][PubMed]
    [Google Scholar]
  42. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  43. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  44. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2 [View Article][PubMed]
    [Google Scholar]
  45. Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of prokaryotes. Int J Syst Evol Microbiol 2019; 69:S1–S111 [View Article][PubMed]
    [Google Scholar]
  46. Dong K, Xu B, Zhu F, Wang G. Flavobacterium hauense sp. nov., isolated from soil and emended descriptions of Flavobacterium subsaxonicum, Flavobacterium beibuense and Flavobacterium rivuli . Int J Syst Evol Microbiol 2013; 63:3237–3242 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004281
Loading
/content/journal/ijsem/10.1099/ijsem.0.004281
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error