1887

Abstract

A Gram-stain-negative, short-rod-shaped and pink-pigmented bacterial strain (HB172049) was isolated from mangrove sediment. Cells grew at 10–45 °C (optimum, 30 °C), pH 6.0–9.0 (optimum, pH 7.0) and with 0.5–9.0 % (w/v) NaCl (optimum, 2–5 %). Analysis of the 16S rRNA gene sequence revealed that the isolate had highest sequence similarities to DSM 100162 (96.5 %) and X14-1 (96.5 %). The values of average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization between the isolate and its close neighbours were, respectively, less than 80.1, 81.7 and 23.2 %. Chemotaxonomic analysis indicated that the sole respiratory quinone was MK-7 and the predominant cellular fatty acids were summed feature 4 and iso-C (42.2 and 24.6 %, respectively). The major polar lipids consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, one unidentified glycolipid, one unidentified phospholipid, one unidentified aminophospholipid and two unidentified polar lipids. The genomic DNA G+C content was 52.6 mol%. Based on polyphasic taxonomic characterization, it is proposed that strain HB172049 belongs to the genus and represents a novel species, for which the name sp. nov. is proposed. The type strain is HB172049 (=CGMCC 1.16729=JCM 33333).

Funding
This study was supported by the:
  • Central Public-interest Scientific Institution Basal Research Fund of CATAS from Chinese Government (Award 1630052016011, 19CXTD-32)
    • Principle Award Recipient: Yong-hua Hu
  • Financial Fund of the Ministry of Agriculture and Rural Affairs of China (Award NFZX2018))
    • Principle Award Recipient: Hui-qin Huang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004280
2020-06-22
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/7/4245.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004280&mimeType=html&fmt=ahah

References

  1. Nedashkovskaya OI, Kim SB, Suzuki M, Shevchenko LS, Lee MS et al. Pontibacter actiniarum gen. nov., sp. nov., a novel member of the phylum ‘Bacteroidetes’, and proposal of Reichenbachiella gen. nov. as a replacement for the illegitimate prokaryotic generic name Reichenbachia Nedashkovskaya et al. 2003. Int J Syst Evol Microbiol 2005; 55:2583–2588 [View Article]
    [Google Scholar]
  2. Munoz R, Rosselló-Móra R, Amann R. Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Syst Appl Microbiol 2016; 39:281–296 [View Article][PubMed]
    [Google Scholar]
  3. Singh AK, Garg N, Lal R. Pontibacter chinhatensis sp. nov., isolated from pond sediment containing discarded hexachlorocyclohexane isomer waste. Int J Syst Evol Microbiol 2015; 65:2248–2254 [View Article][PubMed]
    [Google Scholar]
  4. Dwivedi V, Niharika N, Lal R. Pontibacter lucknowensis sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 2013; 63:309–313 [View Article][PubMed]
    [Google Scholar]
  5. Singh AK, Garg N, Lata P, Kumar R, Negi V et al. Pontibacter indicus sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 2014; 64:254–259 [View Article][PubMed]
    [Google Scholar]
  6. Singh AK, Garg N, Sangwan N, Negi V, Kumar S et al. Pontibacter ramchanderi sp. nov., isolated from hexachlorocyclohexane (HCH) contaminated pond sediment located in the vicinity of a lindane production unit. Int J Syst Evol Microbiol 2013; 63:2829–2834
    [Google Scholar]
  7. Nayyar N, Kohli P, Mahato NK, Lal R. Pontibacter mucosus sp. nov., isolated from hexachlorocyclohexane-contaminated pond sediment. Int J Syst Evol Microbiol 2016; 66:2234–2240 [View Article][PubMed]
    [Google Scholar]
  8. Mahato NK, Tripathi C, Nayyar N, Singh AK, Lal R. Pontibacter ummariensis sp. nov., isolated from a hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 2016; 66:1080–1087 [View Article][PubMed]
    [Google Scholar]
  9. Kohli P, Nayyar N, Sharma A, Singh AK, Lal R. Pontibacter virosus sp. nov., isolated from a hexachlorocyclohexane-contaminated dumpsite. Int J Syst Evol Microbiol 2016; 66:4395–4400 [View Article][PubMed]
    [Google Scholar]
  10. Kang JY, Joung Y, Chun J, Kim H, Joh K et al. Pontibacter saemangeumensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2013; 63:565–569 [View Article][PubMed]
    [Google Scholar]
  11. Wu Y-H, Zhou P, Jian S-L, Liu Z-S, Wang C-S et al. Pontibacter amylolyticus sp. nov., isolated from a deep-sea sediment hydrothermal vent field. Int J Syst Evol Microbiol 2016; 66:1760–1767 [View Article][PubMed]
    [Google Scholar]
  12. Kim DI, Lee JH, Kang JW, Ka J-O, Seong CN. Pontibacter rugosus sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2016; 66:4389–4394 [View Article][PubMed]
    [Google Scholar]
  13. Park S, Park J-M, Lee KH, Yoon J-H. Pontibacter litorisediminis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:4172–4178 [View Article][PubMed]
    [Google Scholar]
  14. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  15. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  16. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  18. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003; 52:696–704 [View Article][PubMed]
    [Google Scholar]
  19. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  20. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365–8370 [View Article][PubMed]
    [Google Scholar]
  21. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  22. Krebs JE, Gale AN, Sontag TC, Keyser VK, Peluso EM et al. A web-based method to calculate average amino acid identity (AAI) between prokaryotic genomes. Biotechniques 2013
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  24. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  25. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article][PubMed]
    [Google Scholar]
  26. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. 2001
    [Google Scholar]
  28. Komagata K, Suzuki KI. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  29. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  30. Dastager SG, Raziuddin QS, Deepa CK, Li WJ, Pandey A. Pontibacter niistensis sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2010; 60:2867–2870 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004280
Loading
/content/journal/ijsem/10.1099/ijsem.0.004280
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error