1887

Abstract

We investigated the taxonomic relationships among subsp. , subsp. and . The three species formed a single clade in the phylogenetic trees based on 16S rRNA gene sequence and multilocus sequence analyses. Digital DNA–DNA hybridization using whole genome sequences suggested that subsp. , subsp. and belong to the same genomospecies. Previously reported phenotypic data also supported this synonymy. Therefore, subsp. and subsp. should be reclassified as later heterotypic synonyms of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004279
2020-07-03
2020-08-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/7/4398.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004279&mimeType=html&fmt=ahah

References

  1. Backus EJ, Tresner HD. A broadened concept of the characteristics of Streptomyces hygroscopicus . Appl Microbiol 1956; 4:243–250[PubMed]
    [Google Scholar]
  2. Ohmori T, Okanishi M, Kawaguchi H. Glebomycin, a new member of the streptomycin class. III. Taxonomic studies on strain No. 12096, producer of glebomycin. J Antibiot 1962; A15:21–27
    [Google Scholar]
  3. Rong X, Huang Y. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst Appl Microbiol 2012; 35:7–18 [CrossRef][PubMed]
    [Google Scholar]
  4. Baldacci E, Grein A. Streptomyces avellaneus and Streptomyces libani: two new species characterized by a hazelnut brown (avellaneus) aerial mycelium. Giornale di Microbiologia 1966; 14:185–198
    [Google Scholar]
  5. Skerman VBD, McGowan V, Sneath PHA. Approved Lists of bacterial names. Int J Syst Bacteriol 1980; 30:225–420
    [Google Scholar]
  6. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [CrossRef][PubMed]
    [Google Scholar]
  7. Komaki H, Tamura T. Reclassification of Streptomyces rimosus subsp. paromomycinus as Streptomyces paromomycinus sp. nov. Int J Syst Evol Microbiol 2019; 69:2577–2583 [CrossRef][PubMed]
    [Google Scholar]
  8. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  9. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [CrossRef][PubMed]
    [Google Scholar]
  10. Komaki H, Sakurai K, Hosoyama A, Kimura A, Igarashi Y et al. Diversity of nonribosomal peptide synthetase and polyketide synthase gene clusters among taxonomically close Streptomyces strains. Sci Rep 2018; 8:6888 [CrossRef][PubMed]
    [Google Scholar]
  11. Komaki H, Sakurai K, Hosoyama A, Kimura A, Trujilo ME et al. Diversity of PKS and NRPS gene clusters between Streptomyces abyssomicinicus sp. nov. and its taxonomic neighbor. J Antibiot 2020; 73:141–151 [CrossRef][PubMed]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  13. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  14. Takahashi K, Nei M. Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Mol Biol Evol 2000; 17:1251–1258 [CrossRef][PubMed]
    [Google Scholar]
  15. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464
    [Google Scholar]
  16. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  17. Kämpfer P, Genus I et al. Streptomyces Waksman and Henrici 1943, 399AL emend. Witt and Stackbrandt 1990, 370 emend. Wellington, Stackebrandt, Sanders, Wolstrup and Jorgensen 1992, 159. In Whitman WB, Parte A, Goodfellow M, Kämpfer P, Busse H et al. (editors) Bergey's Manual of Systematic Bacteriology: The Actinobacteria, Part B New York: Springer; 2012 pp 1455–1781
    [Google Scholar]
  18. Iwami M, Kawai Y, Kiyoto S, Terano H, Kohsaka M et al. A new antitumor antibiotic, chromoxymycin. I. Taxonomic studies on the producing strain: a new subspecies of the genus Streptomyces . J Antibiot 1986; 39:6–11 [CrossRef][PubMed]
    [Google Scholar]
  19. Osada H, Koshino H, Kudo T, Onose R, Isono K. A new inhibitor of protein kinase C, RK-1409 (7-oxostaurosporine). I. Taxonomy and biological activity. J Antibiot 1992; 45:189–194 [CrossRef][PubMed]
    [Google Scholar]
  20. Kohama T, Enokita R, Okazaki T, Miyaoka H, Torikata A et al. Novel microbial metabolites of the phoslactomycins family induce production of colony-stimulating factors by bone marrow stromal cells. I. Taxonomy, fermentation and biological properties. J Antibiot 1993; 46:1503–1511 [CrossRef][PubMed]
    [Google Scholar]
  21. Igarashi M, Kinoshita N, Ikeda T, Kameda M, Hamada M et al. Resormycin, a novel herbicidal and antifungal antibiotic produced by a strain of Streptomyces platensis. I. Taxonomy, production, isolation and biological properties. J Antibiot 1997; 50:1020–1025 [CrossRef][PubMed]
    [Google Scholar]
  22. Sakai T, Sameshima T, Matsufuji M, Kawamura N, Dobashi K et al. Pladienolides, new substances from culture of Streptomyces platensis Mer-11107. I. Taxonomy, fermentation, isolation and screening. J Antibiot 2004; 57:173–179 [CrossRef][PubMed]
    [Google Scholar]
  23. Kumar Y, Goodfellow M. Reclassification of Streptomyces hygroscopicus strains as Streptomyces aldersoniae sp. nov., Streptomyces angustmyceticus sp. nov., comb. nov., Streptomyces ascomycinicus sp. nov., Streptomyces decoyicus sp. nov., comb. nov., Streptomyces milbemycinicus sp. nov. and Streptomyces wellingtoniae sp. nov. Int J Syst Evol Microbiol 2010; 60:769–775 [CrossRef][PubMed]
    [Google Scholar]
  24. Doroghazi JR, Albright JC, Goering AW, Ju K-S, Haines RR et al. A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat Chem Biol 2014; 10:963–968 [CrossRef][PubMed]
    [Google Scholar]
  25. Nakaew N, Lumyong S, Sloan WT, Sungthong R. Bioactivities and genome insights of a thermotolerant antibiotics-producing Streptomyces sp. TM32 reveal its potentials for novel drug discovery. MicrobiologyOpen 2019; 8:e842 [CrossRef][PubMed]
    [Google Scholar]
  26. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H et al. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis . Nat Biotechnol 2003; 21:526–531 [CrossRef][PubMed]
    [Google Scholar]
  27. Suroto DA, Kitani S, Arai M, Ikeda H, Nihira T. Characterization of the biosynthetic gene cluster for cryptic phthoxazolin A in Streptomyces avermitilis . PLoS One 2018; 13:e0190973 [CrossRef][PubMed]
    [Google Scholar]
  28. Maxson T, Tietz JI, Hudson GA, Guo XR, Tai H-C et al. Targeting reactive carbonyls for identifying natural products and their biosynthetic origins. J Am Chem Soc 2016; 138:15157–15166 [CrossRef][PubMed]
    [Google Scholar]
  29. Furumai T, Eto K, Sasaki T, Higuchi H, Onaka H et al. TPU-0037-A, B, C and D, novel lydicamycin congeners with anti-MRSA activity from Streptomyces platensis TP-A0598. J Antibiot 2002; 55:873–880 [CrossRef][PubMed]
    [Google Scholar]
  30. Komaki H, Ichikawa N, Hosoyama A, Fujita N, Igarashi Y. Draft genome sequence of marine-derived Streptomyces sp. TP-A0598, a producer of anti-MRSA antibiotic lydicamycins. Stand Genomic Sci 2015; 10:58 [CrossRef][PubMed]
    [Google Scholar]
  31. Zhang W, Ames BD, Tsai S-C, Tang Y. Engineered biosynthesis of a novel amidated polyketide, using the malonamyl-specific initiation module from the oxytetracycline polyketide synthase. Appl Environ Microbiol 2006; 72:2573–2580 [CrossRef][PubMed]
    [Google Scholar]
  32. Zhao C, Ju J, Christenson SD, Smith WC, Song D et al. Utilization of the methoxymalonyl-acyl carrier protein biosynthesis locus for cloning the oxazolomycin biosynthetic gene cluster from Streptomyces albus JA3453. J Bacteriol 2006; 188:4142–4147 [CrossRef][PubMed]
    [Google Scholar]
  33. Song R, Shi H, Zhu J, Wang H, Shen Y. A single-component flavoenzyme catalyzed regioselective halogenation of pyrone in the biosynthesis of venemycins. ACS Chem Biol 2019; 14:2533–2537 [CrossRef][PubMed]
    [Google Scholar]
  34. Pérez-Victoria I, Oves-Costales D, Lacret R, Martín J, Sánchez-Hidalgo M et al. Structure elucidation and biosynthetic gene cluster analysis of caniferolides A-D, new bioactive 36-membered macrolides from the marine-derived Streptomyces caniferus CA-271066. Org Biomol Chem 2019; 17:2954–2971 [CrossRef][PubMed]
    [Google Scholar]
  35. Bo ST, Xu ZF, Yang L, Cheng P, Tan RX et al. Structure and biosynthesis of mayamycin B, a new polyketide with antibacterial activity from Streptomyces sp. 120454. J Antibiot 2018; 71:601–605 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004279
Loading
/content/journal/ijsem/10.1099/ijsem.0.004279
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error