1887

Abstract

A Gram-stain-negative, long-rod-shaped and facultative aerobic bacterium, designated HB-1, was isolated from a round hay bale at the Kansas State University Beef Stocker Unit. The results of phylogenetic analysis of 16S rRNA gene sequences indicated that strain HB-1 clustered within the genus and its closest relatives were A1-9 (98.0 %), YJ-T1-11 (98.0 %), JS43 (97.8 %), DSM 3857 (97.5 %) and Orc-4 (96.9 %). Additional phylogenomic analysis also indicated that strain HB-1 belongs to the genus . The draft genome of strain HB-1 had a total length of 4.23 Mbp and contained 4071 protein-coding genes. The average nucleotide identity values between the genomes of strain HB-1 and the three most-related type strains ranged from 77.5 to 78.1 %. The DNA G+C content of strain HB-1 was 63.7 mol%. The novel strain grew at 10–37 °C, pH 5–10 and with 0–2 % NaCl. Oxidase and catalase activities were positive. Cells were 0.3–0.4 µm wide, 3.0–7.0 µm long and usually found in pairs or chains of cells. The major respiratory quinone of strain HB-1 was Q-10 (90 %), with a minor amount of Q-9 (10 %). The major fatty acids were C ω7 (54.6 %) and C (18.2 %). On the basis of phenotypic, phylogenetic and chemotaxonomic data, strain HB-1 (=DSM 109828=ATCC TSD-211) is considered to represent a novel species of the genus , for which the name sp. nov. is proposed.

Funding
This study was supported by the:
  • National Science Foundation (Award OIA-1656006)
    • Principle Award Recipient: JEONGDAE IM
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004276
2020-06-18
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/7/4224.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004276&mimeType=html&fmt=ahah

References

  1. Rothe B, Fischer A, Hirsch P, Sittig M, Stackebrandt E. The phylogenetic position of the budding bacteria Blastobacter aggregatus and Gemmobacter aquatilis gen., nov. sp. nov. Arch Microbiol 1987; 147:92–99
    [Google Scholar]
  2. Chen W-M, Cho N-T, Huang W-C, Young C-C, Sheu S-Y. Description of Gemmobacter fontiphilus sp. nov., isolated from a freshwater spring, reclassification of Catellibacterium nectariphilum as Gemmobacter nectariphilus comb. nov., Catellibacterium changlense as Gemmobacter changlensis comb. nov., Catellibacte. Int J Syst Evol Microbiol 2013; 63:470–478
    [Google Scholar]
  3. Liu Y, CJ X, Jiang JT, Liu YH, Song XF et al. Catellibacterium aquatile sp. nov., isolated from fresh water, and emended description of the genus Catellibacterium Tanaka, et al. 2004. Int J Syst Evol Microbiol 2010:2027–2031
    [Google Scholar]
  4. Sheu S-Y, Shiau Y-W, Wei Y-T, Chen W-M. Gemmobacter lanyuensis sp. nov., isolated from a freshwater spring. Int J Syst Evol Microbiol 2013; 63:4039–4045 [View Article][PubMed]
    [Google Scholar]
  5. Sheu S-Y, Sheu D-S, Sheu F-S, Chen W-M. Gemmobacter tilapiae sp. nov., a poly-β-hydroxybutyrate-accumulating bacterium isolated from a freshwater pond. Int J Syst Evol Microbiol 2013; 63:1550–1556 [View Article][PubMed]
    [Google Scholar]
  6. Kämpfer P, Jerzak L, Wilharm G, Golke J, Busse H-J et al. Gemmobacter intermedius sp. nov., isolated from a white stork (Ciconia ciconia). Int J Syst Evol Microbiol 2015; 65:778–783 [View Article][PubMed]
    [Google Scholar]
  7. Liu J-J, Zhang X-Q, Chi F-T, Pan J, Sun C et al. Gemmobacter megaterium sp. nov., isolated from coastal planktonic seaweeds. Int J Syst Evol Microbiol 2014; 64:66–71 [View Article][PubMed]
    [Google Scholar]
  8. Kang JY, Kim M-J, Chun J, Son KP, Jahng KY. Gemmobacter straminiformis sp. nov., isolated from an artificial fountain. Int J Syst Evol Microbiol 2017; 67:5019–5025 [View Article][PubMed]
    [Google Scholar]
  9. Zheng JW, Chen YG, Zhang J, YY N, WJ L et al. Description of Catellibacterium caeni sp. nov., reclassification of Thodobacter changlensis Anil Kumar, et al. 2007 as Catellibacterium changlense comb. nov. and emended description of the genus Catellibacterium . Int J Syst Evol Microbiol 2011:1921–1926
    [Google Scholar]
  10. Zhang J, Chen S-A, Zheng J-W, Cai S, Hang B-J et al. Catellibacterium nanjingense sp. nov., a propanil-degrading bacterium isolated from activated sludge, and emended description of the genus Catellibacterium . Int J Syst Evol Microbiol 2012; 62:495–499 [View Article][PubMed]
    [Google Scholar]
  11. Tanaka Y, Hanada S, Manome A, Tsuchida T, Kurane R et al. Catellibacterium nectariphilum gen. nov., sp. nov., which requires a diffusible compound from a strain related to the genus Sphingomonas for vigorous growth. Int J Syst Evol Microbiol 2004; 54:955–959 [View Article][PubMed]
    [Google Scholar]
  12. Yoo Y, Lee DW, Lee H, Kwon B-O, Khim JS et al. Gemmobacter lutimaris sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2019; 69:1676–1681 [View Article][PubMed]
    [Google Scholar]
  13. Qu J-H, Ma W-W, Zhou J, Wang X-F, Lu W-L et al. Gemmobacter caeruleus sp. nov., a novel species originating from lake sediment. Int J Syst Evol Microbiol 2020; 70:1987-1992 [View Article][PubMed]
    [Google Scholar]
  14. Hameed A, Shahina M, Lin SY, Chen WM, Hsu YH et al. Description of Gemmobacter aestuarii sp. nov., isolated from estuarine surface water and reclassification of Cereibacter changlensis as Gemmobacter changlensis Chen, et al. 2013. Arch Microbiol 2020:
    [Google Scholar]
  15. Müller CE, von Rosen D, Udén P. Effect of forage conservation method on microbial flora and fermentation pattern in forage and in equine colon and faeces. Livest Sci 2008; 119:116–128
    [Google Scholar]
  16. Aitken FC, Hankin RG. Vitamins in feeds for livestock. Commonwealth Bur. Animal Nutrition 1970
    [Google Scholar]
  17. Im J, Walshe-Langford GE, Moon J-W, Löffler FE. Environmental fate of the next generation refrigerant 2,3,3,3-tetrafluoropropene (HFO-1234yf). Environ Sci Technol 2014; 48:13181–13187 [View Article][PubMed]
    [Google Scholar]
  18. Gomori G. Preparation of buffers for use in enzyme studies. In Roger L, Lundblad FM. (editors) Handbook of Biochemistry and Molecular Biology CRC Press;
    [Google Scholar]
  19. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496[PubMed]
    [Google Scholar]
  20. Kuykendall LD, Roy MA, O’Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361
    [Google Scholar]
  21. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586[PubMed]
    [Google Scholar]
  22. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130
    [Google Scholar]
  23. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202
    [Google Scholar]
  24. Cappuccino JG, Natalie S. Microbiology: A Laboratory Manual, 10th ed. Pearson; 2014
    [Google Scholar]
  25. Lane DJ. 16S/23S rRNA sequencing. In Goodfellow E, Stackebrandt M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: Wiley; 1991 pp 115–175
    [Google Scholar]
  26. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  29. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  31. Wu Y-W. ezTree: an automated pipeline for identifying phylogenetic marker genes and inferring evolutionary relationships among uncultivated prokaryotic draft genomes. BMC Genomics 2018; 19:921 [View Article][PubMed]
    [Google Scholar]
  32. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article][PubMed]
    [Google Scholar]
  33. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A et al. The Pfam protein families database in 2019. Nucleic Acids Res 2019; 47:D427–D432 [View Article][PubMed]
    [Google Scholar]
  34. Madeira F, Park YM, Lee J, Buso N, Gur T et al. The EMBL-EBI search and sequence analysis tools Apis in 2019. Nucleic Acids Res 2019; 47:W636–W641 [View Article][PubMed]
    [Google Scholar]
  35. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007; 56:564–577 [View Article][PubMed]
    [Google Scholar]
  36. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [View Article][PubMed]
    [Google Scholar]
  37. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  38. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [View Article][PubMed]
    [Google Scholar]
  39. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:206–214
    [Google Scholar]
  40. Förster AH, Gescher J. Metabolic engineering of Escherichia coli for production of mixed-acid fermentation end products. Front Bioeng Biotechnol 2014; 2:1–12
    [Google Scholar]
  41. Figueras MJ, Beaz-Hidalgo R, Hossain MJ, Liles MR. Taxonomic affiliation of new genomes should be verified using average nucleotide identity and multilocus phylogenetic analysis. Genome Announc 2014; 2:6–7 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004276
Loading
/content/journal/ijsem/10.1099/ijsem.0.004276
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error