1887

Abstract

Strains of , thought to play vital roles in the environment for their high enzyme production capacity during decomposition of polysaccharides, are ubiquitous in hypersaline environments. A Gram-negative, non-spore forming, gliding, aerobic bacterial strain, designated LN3S3, was isolated from alkaline saline soil sampled in Tumd Right Banner, Inner Mongolia, northern PR China. Strain LN3S3 grew at 10–40 °C (optimum, 30 °C), pH 5.0–9.0 (optimum, pH 8.0) and with 0–12.5 % NaCl (optimum, 2.0 %). A phylogenetic tree based on the 16S rRNA gene sequences showed that strain LN3S3 clustered with JL3085 and MEBiC08714, sharing 97.0, 96.7 and <96.50 % of 16S rRNA gene sequence similarities to JL3085, MEBiC08714 and all other type strains. MK-7 was the major respiratory quinone, while phosphatidylethanolamine, two unidentified phospholipids, an unidentified aminophospholipid, an unidentified lipid and two unidentified aminolipids were the major polar lipids. Its major cellular fatty acids were iso-C, anteiso-C and summed feature 3 (C ω7 and/or C ω6). The genome consisted of a circular 5 550 304 bp long chromosome with a DNA GC content of 44.0 mol%. The average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA–DNA hybridization (dDDH) values of strain LN3S3 to JL3085 and MEBiC08714 were 82.5 and 81.5 %, 87.5 and 86.0 %, and 39.1 and 35.1 %, respectively. Based on physiological, genotypic and phylogenetic analyses, strain LN3S3 could be discriminated from its phylogenetic relatives. sp. nov. is therefore proposed with strain LN3S3 (=CGMCC 1.17081=KCTC 72458) as the type strain.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 31960020)
    • Principle Award Recipient: Ji-Quan Sun
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004262
2020-06-05
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/7/4139.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004262&mimeType=html&fmt=ahah

References

  1. Nedashkovskaya OI, Kim SB, Vancanneyt M, Lysenko AM, Shin DS et al. Echinicola pacifica gen. nov., sp. nov., a novel flexibacterium isolated from the sea urchin Strongylocentrotus intermedius . Int J Syst Evol Microbiol 2006; 56:953–958 [View Article][PubMed]
    [Google Scholar]
  2. Liang P, Sun J, Li H, Liu M, Xue Z et al. Echinicola rosea sp. nov., a marine bacterium isolated from surface seawater. Int J Syst Evol Microbiol 2016; 66:3299–3304 [View Article][PubMed]
    [Google Scholar]
  3. Lee DW, Lee AH, Lee H, Kim J-J, Khim JS et al. Echinicola sediminis sp. nov., a marine bacterium isolated from coastal sediment. Int J Syst Evol Microbiol 2017; 67:3351–3357 [View Article][PubMed]
    [Google Scholar]
  4. Jung Y-J, Yang S-H, Kwon KK, Bae SS. Echinicola strongylocentroti sp. nov., isolated from a sea urchin Strongylocentrotus intermedius . Int J Syst Evol Microbiol 2017; 67:670–675 [View Article][PubMed]
    [Google Scholar]
  5. Nedashkovskaya OI, Kim SB, Hoste B, Shin DS, Beleneva IA et al. Echinicola vietnamensis sp. nov., a member of the phylum Bacteroidetes isolated from seawater. Int J Syst Evol Microbiol 2007; 57:761–763 [View Article][PubMed]
    [Google Scholar]
  6. Kim H, Joung Y, Ahn T-S, Joh K. Echinicola jeungdonensis sp. nov., isolated from a solar saltern. Int J Syst Evol Microbiol 2011; 61:2065–2068 [View Article][PubMed]
    [Google Scholar]
  7. Srinivas TNR, Kailash Tryambak B, Anil Kumar P. Echinicola shivajiensis sp. nov., a novel bacterium of the family "Cyclobacteriaceae" isolated from brackish water pond. Antonie van Leeuwenhoek 2012; 101:641–647 [View Article][PubMed]
    [Google Scholar]
  8. Zhan P, Ye J, Lin X, Zhang F, Lin D et al. Complete genome sequence of Echinicola rosea JL3085, a xylan and pectin decomposer. Mar Genomics 2019; 100722:100722 [View Article][PubMed]
    [Google Scholar]
  9. Xu L, Huang X-X, Fan D-L, Sun J-Q. Lysobacter alkalisoli sp. nov., a chitin-degrading strain isolated from saline-alkaline soil. Int J Syst Evol Microbiol 2020; 70:1273–1281 [View Article][PubMed]
    [Google Scholar]
  10. Ma J-P, Wang Z, Lu P, Wang H-J, Ali SW et al. Biodegradation of the sulfonylurea herbicide chlorimuron-ethyl by the strain Pseudomonas sp. LW3. FEMS Microbiol Lett 2010; 296:203–209
    [Google Scholar]
  11. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  12. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  15. Rzhetsky A, Nei M. A simple method for estimating and testing Minimum-Evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  16. Rzhetsky A, Nei M. Theoretical Foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10:1073–1095 [View Article][PubMed]
    [Google Scholar]
  17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  19. Xu L, Zhang H, Xing Y-T, Li N, Wang S et al. Complete genome sequence of Sphingobacterium psychroaquaticum strain SJ-25, an aerobic bacterium capable of suppressing fungal pathogens. Curr Microbiol 2020; 77:115–122 [View Article][PubMed]
    [Google Scholar]
  20. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article][PubMed]
    [Google Scholar]
  21. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  22. Rodriguez-R LM, KK T. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Peer J 2016:e1900
    [Google Scholar]
  23. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  24. Jang JH, Lee D, Seo T. Lysobacter pedocola sp. nov., a novel species isolated from Korean soil. J Microbiol 2018; 56:387–392 [View Article][PubMed]
    [Google Scholar]
  25. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  26. Kates M. Techniques of lipidology, 2nd ed. Amsterdam: Elsevier; 1986
    [Google Scholar]
  27. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial Systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  28. Smibert RM, Krieg NR. Phenotypic Characterization. In Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  29. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  30. Kim B-C, Jeong W-J, Kim DY, Oh H-W, Kim H et al. Paenibacillus pueri sp. nov., isolated from Pu'er tea. Int J Syst Evol Microbiol 2009; 59:1002–1006 [View Article][PubMed]
    [Google Scholar]
  31. Fraser SL, Jorgensen JH. Reappraisal of the antimicrobial susceptibilities of Chryseobacterium and Flavobacterium species and methods for reliable susceptibility testing. Antimicrob Agents Chemother 1997; 41:2738–2741 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004262
Loading
/content/journal/ijsem/10.1099/ijsem.0.004262
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error