1887

Abstract

A Gram-stain-positive, catalase-positive, facultatively anaerobic, terminal-spore-forming rod, designated strain BCM23-1, was isolated from bark of collected from Chiang Mai Province, Thailand. This strain produced -lactic acid from glucose. It grew at 20–45 °C (optimum, 30 °C), pH 3.5–9 (optimum, pH 7.0) and in the presence of 1–4 % (w/v) NaCl. The cell-wall peptidoglycan contained -diaminopimelic acid (A1γ). The major isoprenoid quinone was menaquinone 7 (MK-7). Polar lipids analysis revealed the presence of diphosphatidylglycerol, phosphatidylglycerol, an unidentified aminophospholipid, an unidentified phospholipid and an unidentified lipid. The predominant cellular fatty acids were anteiso-C, anteiso-C and iso-C when cultivated on GYP agar plates. The 16S rRNA gene sequence similarity between strain BCM23-1 and NK26-11 was 98.3 %. The draft genome of BCM23-1 was 3.24 Mb in size and contained 3088 coding sequences with an DNA G+C content of 37.1 mol%. The values of ANIb, ANIm and digital DNA–DNA hybridization between strain BCM23-1 and NK26-11 were 89.9, 90.8 and 40.4 %, respectively. The results of phenotypic and chemotaxonomic, 16S rRNA gene sequence similarity, and whole genome analyses support strain BCM23-1 as representing a novel species of for which the name sp. nov. is proposed. The type strain is BCM23-1 (=LMG 31662=JCM 33748=TISTR 2841).

Funding
This study was supported by the:
  • Somboon Tanasupawat , Chulalongkorn University , (Award GCURP_58_01_33_01)
  • Engkarat Kingkaew , Thailand Research Fund , (Award PHD/0226/2560)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004261
2020-06-10
2021-02-26
Loading full text...

Full text loading...

References

  1. Prasirtsak B, Thongchul N, Tolieng V, Tanasupawat S. Terrilactibacillus laevilacticus gen. nov., sp. nov., isolated from soil. Int J Syst Evol Microbiol 2016; 66:1311–1316 [CrossRef][PubMed]
    [Google Scholar]
  2. De Man JC, Rogosa M, Sharpe ME. A medium for the cultivation of lactobacilli. J Appl Bacteriol 1960; 23:130–135 [CrossRef]
    [Google Scholar]
  3. Hucker GJ, Conn HJ. Methods of Gram staining. N Y State Agric Exp Stn Tech Bull 1923; 93:3–37
    [Google Scholar]
  4. Forbes L. Rapid flagella stain. J Clin Microbiol 1981; 13:807–809 [CrossRef][PubMed]
    [Google Scholar]
  5. Tanasupawat S, Ezaki T, Suzuki K-I, Okada S, Komagata K et al. Characterization and identification of Lactobacillus pentosus and Lactobacillus plantarum strains from fermented foods in Thailand. J Gen Appl Microbiol 1992; 38:121–134 [CrossRef]
    [Google Scholar]
  6. Prasirtsak B, Tanasupawat S, Boonsombat R, Kodama K, Thongchul N. Characterization of lactic acid producing bacteria from Thai sources. J Appl Pharm Sci 2013; 3:033–038
    [Google Scholar]
  7. Okada S, Toyoda T, Kozaki M. An easy method for the determination of the optical types of lactic acid produced by lactic acid bacteria. Agric Biol Chem 1978; 42:1781–1783
    [Google Scholar]
  8. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [CrossRef][PubMed]
    [Google Scholar]
  9. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  10. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: Microbial ID, Inc 1990
    [Google Scholar]
  11. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  12. Saito H, Miura KI. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 1963; 72:619–629 [CrossRef][PubMed]
    [Google Scholar]
  13. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  14. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  16. Kluge AG, Farris JS. Quantitative Phyletics and the evolution of anurans. Syst Biol 1969; 18:1–32 [CrossRef]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  19. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  20. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  21. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  22. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [CrossRef][PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  24. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [CrossRef][PubMed]
    [Google Scholar]
  25. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [CrossRef][PubMed]
    [Google Scholar]
  26. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
  27. Chang Y-H, Stackebrandt E. The Family Sporolactobacillaceae . In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes: Firmicutes and Tenericutes, Fourth Edition. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014 pp 353–362
    [Google Scholar]
  28. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  29. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  30. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004261
Loading
/content/journal/ijsem/10.1099/ijsem.0.004261
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error