1887

Abstract

A novel endophytic actinomycete, designated strain p1410, was isolated from the root of cattail pollen ( L.) and characterized using a polyphasic approach. The strain had morphological characteristics and chemotaxonomic properties identical to those of members of the genus . It produced spiral chains of spores on aerial mycelium as well as forming a pseudosporangium. Whole-cell hydrolysates contained -diaminopimelic acid, glucose, ribose and madurose. The menaquinones detected were MK-9(H), MK-9(H) and MK-9(H). The major fatty acids were 10-methyl C, iso-C and C. The polar lipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylinositol mannoside and an unknown glycolipid. The DNA G+C content of the draft genome sequence, consisting of 11.4 Mbp, was 70.9 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed that strain p1410 belongs to the genus with the highest sequence similarity to HMC10 (98.6 %), but phylogenetically clustered with YIM 65601 (98.4 %) and NRRL 15532 (98.3 %). Based on its phenotypic characteristics, DNA–DNA relatedness and average nucleotide identity, the strain is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is p1410 (=CCTCC AA 2019044=JCM 33461).

Funding
This study was supported by the:
  • Jia Song , National Natural Science Foundation of China , (Award 31700067)
  • Chongxi Liu , the Academic Backbone Project of Northeast Agricultural University , (Award 17XG17)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004249
2020-06-05
2020-10-20
Loading full text...

Full text loading...

References

  1. Zhang Z, Wang Y, Ruan J. Reclassification of Thermomonospora and Microtetraspora . Int J Syst Bacteriol 1998; 48:411–422 [CrossRef][PubMed]
    [Google Scholar]
  2. Sripreechasak P, Phongsopitanun W, Supong K, Pittayakhajonwut P, Kudo T et al. Nonomuraea rhodomycinica sp. nov., isolated from peat swamp forest soil. Int J Syst Evol Microbiol 2017; 67:1683–1687 [CrossRef][PubMed]
    [Google Scholar]
  3. Zheng W, Zhao J, Li D, Jiang H, Han L et al. Nonomuraea lycopersici sp. nov., isolated from the root of tomato plants (Solanum lycopersicum L.). Antonie van Leeuwenhoek 2018; 111:1095–1103 [CrossRef][PubMed]
    [Google Scholar]
  4. Kämpfer P. Genus VI. Nonomuraea. In Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME et al. (editors) Bergey’s Manual of Systematic Bacteriology. the Actinobacteria 5, 2nd ed. New York: Springer; 2012 pp 1844–1861
    [Google Scholar]
  5. Shen Y, Jia F, Liu C, Li J, Guo S et al. Nonomuraea zeae sp. nov., isolated from the rhizosphere of corn (Zea mays L.). Int J Syst Evol Microbiol 2016; 66:2259–2264 [CrossRef][PubMed]
    [Google Scholar]
  6. Xi L, Zhang L, Ruan J, Huang Y. Nonomuraea maritime sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2011; 61:2740–2744 [CrossRef][PubMed]
    [Google Scholar]
  7. Suksaard P, Mingma R, Srisuk N, Matsumoto A, Takahashi Y et al. Nonomuraea purpurea sp. nov., an actinomycete isolated from mangrove sediment. Int J Syst Evol Microbiol 2016; 66:4987–4992 [CrossRef][PubMed]
    [Google Scholar]
  8. Wu H, Liu B. Nonomuraea thermotolerans sp. nov., a thermotolerant actinomycete isolated from mushroom compost. Int J Syst Evol Microbiol 2016; 66:894–900 [CrossRef][PubMed]
    [Google Scholar]
  9. Qin S, Zhao G-Z, Klenk H-P, Li J, Zhu W-Y et al. Nonomuraea antimicrobica sp. nov., an endophytic actinomycete isolated from a leaf of Maytenus austroyunnanensis . Int J Syst Evol Microbiol 2009; 59:2747–2751 [CrossRef][PubMed]
    [Google Scholar]
  10. Li J, Zhao G-Z, Huang H-Y, Zhu W-Y, Lee J-C et al. Nonomuraea endophytica sp. nov., an endophytic actinomycete isolated from Artemisia annua L. Int J Syst Evol Microbiol 2011; 61:757–761 [CrossRef][PubMed]
    [Google Scholar]
  11. Rachniyom H, Matsumoto A, Indananda C, Duangmal K, Takahashi Y et al. Nonomuraea syzygii sp. nov., an endophytic actinomycete isolated from the roots of a jambolan plum tree (Syzygium cumini L. Skeels). Int J Syst Evol Microbiol 2015; 65:1234–1240 [CrossRef][PubMed]
    [Google Scholar]
  12. Wang X, Zhao J, Liu C, Wang J, Shen Y et al. Nonomuraea solani sp. nov., an actinomycete isolated from eggplant root (Solanum melongena L.). Int J Syst Evol Microbiol 2013; 63:2418–2423 [CrossRef][PubMed]
    [Google Scholar]
  13. Li Z, Song W, Zhao J, Zhuang X, Zhao Y et al. Nonomuraea glycinis sp. nov., a novel actinomycete isolated from the root of black soya bean [Glycine max (L.) Merr]. Int J Syst Evol Microbiol 2017; 67:5026–5031 [CrossRef][PubMed]
    [Google Scholar]
  14. Niemhom N, Chutrakul C, Suriyachadkun C, Thawai C. Nonomuraea stahlianthi sp. nov., an endophytic actinomycete isolated from the stem of Stahlianthus campanulatus . Int J Syst Evol Microbiol 2017; 67:2879–2884 [CrossRef][PubMed]
    [Google Scholar]
  15. Sungthong R, Nakaew N. The genus Nonomuraea: a review of a rare actinomycete taxon for novel metabolites. J Basic Microbiol 2015; 55:554–565 [CrossRef][PubMed]
    [Google Scholar]
  16. Dalmastri C, Gastaldo L, Marcone GL, Binda E, Congiu T et al. Classification of Nonomuraea sp. ATCC 39727, an actinomycete that produces the glycopeptide antibiotic A40926, as Nonomuraea gerenzanensis sp. nov. Int J Syst Evol Microbiol 2016; 66:912–921 [CrossRef][PubMed]
    [Google Scholar]
  17. Liu CX, Wang XJ et al. Streptomyces harbinensis sp. nov., an endophytic, ikarugamycin-producing actinomycete isolated from soybean root [Glycine max (L.) Merr]. Int J Syst Evol Microbiol 2013; 63:3579–3584 [CrossRef][PubMed]
    [Google Scholar]
  18. Liu C, Zhuang X, Yu Z, Wang Z, Wang Y et al. Community structures and antifungal activity of root-associated endophytic actinobacteria of healthy and diseased soybean. Microorganisms 2019; 7:243 [CrossRef][PubMed]
    [Google Scholar]
  19. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340
    [Google Scholar]
  20. Jin L, Zhao Y, Song W, Duan L, Jiang S et al. Streptomyces inhibens sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 2019; 69:688–695 [CrossRef][PubMed]
    [Google Scholar]
  21. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949; 57:141–145[PubMed]
    [Google Scholar]
  22. Waksman SA. The Actinomycetes. In: Classification, Identification and Descriptions of Genera and Species, vol. 2 Baltimore: Williams & Wilkins; 1961
    [Google Scholar]
  23. Waksman SA. The Actinomycetes. A Summary of Current Knowledge New York: Ronald Press; 1967
    [Google Scholar]
  24. Kelly KL. Inter-Society Color Council—National Bureau of Standards Color-Name Charts Illustrated with Centroid Colors Washington: US Government Printing Office; 1964
    [Google Scholar]
  25. Zhao J, Han L, Yu M, Cao P, Li D, MY Y, DM L et al. Characterization of Streptomyces sporangiiformans sp. nov., a novel soil actinomycete with antibacterial activity against Ralstonia solanacearum . Microorganisms 2019; 7:360 [CrossRef][PubMed]
    [Google Scholar]
  26. Jia F, Liu C, Wang X, Zhao J, Liu Q et al. Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae . Antonie van Leeuwenhoek 2013; 103:399–408 [CrossRef][PubMed]
    [Google Scholar]
  27. Smibert RM, Krieg NR. Phenotypic characterisation. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  28. Gordon RE, Barnett DA, Handerhan JE, Pang C. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24:54–63
    [Google Scholar]
  29. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales . Int J Syst Bacteriol 1993; 43:805–812
    [Google Scholar]
  30. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000; 30:178–182 [CrossRef][PubMed]
    [Google Scholar]
  31. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. (editors) Society of Industrial Microbiology Actinomycete taxonomy special publication; 1980 pp 227–291
    [Google Scholar]
  32. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241
    [Google Scholar]
  33. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp 267–284
    [Google Scholar]
  34. Wu C, Lu X, Qin M, Wang Y, Ruan J et al. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989; 16:176–178
    [Google Scholar]
  35. Zhuang X, Peng C, Wang Z, Zhao J, Shen Y et al. Actinomadura physcomitrii sp. nov., a novel actinomycete isolated from moss [Physcomitrium sphaericum (Ludw) Fuernr]. Antonie van Leeuwenhoek 2020; 113:677–685 [CrossRef][PubMed]
    [Google Scholar]
  36. Nikodinovic J, Barrow KD, Chuck J-A. High yield preparation of genomic DNA from Streptomyces . Biotechniques 2003; 35:932–934 [CrossRef][PubMed]
    [Google Scholar]
  37. Wang Z, Yu Z, Zhao J, Zhuang X, Cao P et al. Community composition, antifungal activity and chemical analyses of ant-Derived actinobacteria. Front Microbiol 2020; 11:201 [CrossRef][PubMed]
    [Google Scholar]
  38. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  39. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  40. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  41. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  42. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  43. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  44. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  45. Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from illumina MiSeq data. Bioinformatics 2015; 31:587–589 [CrossRef][PubMed]
    [Google Scholar]
  46. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [CrossRef][PubMed]
    [Google Scholar]
  47. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  48. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  49. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  50. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  51. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on systematic bacteriology. Report of the AD hoc Committee on reconciliation of approaches to bacterial Systematics. Int J Syst Bacteriol 1987; 37:463–464
    [Google Scholar]
  52. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the bacteria and archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [CrossRef][PubMed]
    [Google Scholar]
  53. Roes Mle, Meyers PR. Nonomuraea candida sp. nov., a new species from South African soil. Antonie van Leeuwenhoek 2008; 93:133–139 [CrossRef][PubMed]
    [Google Scholar]
  54. Chiba S, Suzuki M, Ando K. Taxonomic re-evaluation of 'Nocardiopsis' sp. K-252T (= NRRL 15532T): a proposal to transfer this strain to the genus Nonomuraea as Nonomuraea longicatena sp. nov. Int J Syst Bacteriol 1999; 49 Pt 4:1623–1630 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004249
Loading
/content/journal/ijsem/10.1099/ijsem.0.004249
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error