1887

Abstract

A Gram-reaction-positive, endospore-forming bacterium, designated strain P1, was isolated from water samples collected from Pasinler Hot Spring and characterized using a polyphasic approach to clarify its taxonomic position. Strain P1 was found to have chemotaxonomic and morphological characteristics consistent with its classification in the genus . The strain shared the highest 16S rRNA gene sequence identity values with R-6488 (97.6 %) and MO-04 (97.2 %) and formed a distinct clade with both type strains in the phylogenetic trees based on 16S rRNA gene sequences. Strain P1 could grow optimally at 55 °C and in the presence of 2 % NaCl. The organism was found to contain meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The predominant menaquinone was determined to be MK-7. The major cellular fatty acids were identified as iso-C, iso-C and anteiso-C. Based upon the consensus of phenotypic and phylogenetic analyses, strain P1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is P1 (=DSM 107529=CECT 9885=NCCB 100674).

Funding
This study was supported by the:
  • Atatürk Üniversitesi (Award FBA-2019-7225)
    • Principle Award Recipient: Ahmet ADIGUZEL
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004246
2020-06-04
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/6/3865.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004246&mimeType=html&fmt=ahah

References

  1. Cohn F. Untersuchungen uber Bakterien. Beitr Biol Pflanz 1872; 1:127–224
    [Google Scholar]
  2. Poudel P, Miyamoto H, Miyamoto H, Okugawa Y, Tashiro Y et al. Thermotolerant Bacillus kokeshiiformis sp. nov. isolated from marine animal resources compost. Int J Syst Evol Microbiol 2014; 64:2668–2674 [View Article][PubMed]
    [Google Scholar]
  3. Dunlap CA, Schisler DA, Perry EB, Connor N, Cohan FM et al. Bacillus swezeyi sp. nov. and Bacillus haynesii sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2017; 67:2720–2725 [View Article][PubMed]
    [Google Scholar]
  4. Tidjani Alou M, Rathored J, Traore SI, Khelaifia S, Michelle C et al. Bacillus niameyensis sp. nov., a new bacterial species isolated from human gut. New Microbes New Infect 2015; 8:61–69 [View Article][PubMed]
    [Google Scholar]
  5. Menes RJ, Machin EV, Iriarte A, Langleib M. Bacillus natronophilus sp. nov., an alkaliphilic bacterium isolated from a soda lake. Int J Syst Evol Microbiol 2019
    [Google Scholar]
  6. Dong L, Wang S, Cao H, Zhao B, Zhang X et al. Bacillus lacisalsi sp. nov., a moderately haloalkaliphilic bacterium isolated from a saline-alkaline lake. Antonie van Leeuwenhoek 2020; 113:127–136 [View Article][PubMed]
    [Google Scholar]
  7. Liu Y, Yu M, Zhang X-H. Bacillus alkalitolerans sp. nov., isolated from marine sediment near a hydrothermal vent. Int J Syst Evol Microbiol 2018; 68:1184–1189 [View Article][PubMed]
    [Google Scholar]
  8. Shin B, Park C, Lee B-H, Lee K-E, Park W. Bacillus miscanthi sp. nov., a alkaliphilic bacterium from the rhizosphere of Miscanthus sacchariflorus . Int J Syst Evol Microbiol 2020; 70:1843–1849 [View Article][PubMed]
    [Google Scholar]
  9. Acevedo MM, Carroll LM, Mukherjee M, Mills E, XIaoli L et al. Bacillus clarus sp. nov. is a new Bacillus cereus group species isolated from soil. BioRxiv 2019; 508077:
    [Google Scholar]
  10. Liu B, Liu G-H, Wang X-Y, Wang J-P, Chen Z et al. Bacillus urbisdiaboli sp. nov., isolated from soil sampled in Xinjiang. Int J Syst Evol Microbiol 2019; 69:1591–1596 [View Article][PubMed]
    [Google Scholar]
  11. Rao MPN, Dong Z-Y, Zhang H, Niu X-K, Zhang K et al. Bacillus antri sp. nov., isolated from cave soil. Int J Syst Evol Microbiol 2019; 69:2335–2339 [View Article][PubMed]
    [Google Scholar]
  12. Logan NA, Vos PD. Bacillus. Bergey's manual of systematics of archaea and bacteria; 2015; 171–63
  13. Albert RA, Archambault J, Rosselló-Mora R, Tindall BJ, Matheny M. Bacillus acidicola sp. nov., a novel mesophilic, acidophilic species isolated from acidic Sphagnum peat bogs in Wisconsin. Int J Syst Evol Microbiol 2005; 55:2125–2130 [View Article][PubMed]
    [Google Scholar]
  14. Olivera N, Siñeriz F, Breccia JD. Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from the rhizosphere of Atriplex lampa in Patagonia, Argentina. Int J Syst Evol Microbiol 2005; 55:443–447 [View Article][PubMed]
    [Google Scholar]
  15. Ventosa A, García MT, Kamekura M, Onishi H, Ruiz-Berraquero F. Bacillus halophilus sp. nov., a moderately halophilic Bacillus species. Syst Appl Microbiol 1989; 12:162–166 [View Article]
    [Google Scholar]
  16. Suzuki Y, Kishigami T, Inoue K, Mizoguchi Y, Eto N et al. Bacillus thermoglucosidasius sp. nov., a New Species of Obligately Thermophilic Bacilli. Syst Appl Microbiol 1983; 4:487–495 [View Article][PubMed]
    [Google Scholar]
  17. Zarilla KA, Perry JJ. Bacillus thermokovorans, sp. nov., a species of obligately thermophilic hydrocarbon utilizing endospore-forming bacteria. Syst Appl Microbiol 1987; 9:258–264 [View Article]
    [Google Scholar]
  18. Caccamo D, Gugliandolo C, Stackebrandt E, Maugeri TL. Bacillus vulcani sp. nov., a novel thermophilic species isolated from a shallow marine hydrothermal vent. Int J Syst Evol Microbiol 2000; 50 Pt 6:2009–2012 [View Article][PubMed]
    [Google Scholar]
  19. Sun Q-L, Yu C, Luan Z-D, Lian C, Hu Y-H et al. Description of Bacillus kexueae sp. nov. and Bacillus manusensis sp. nov., isolated from hydrothermal sediments. Int J Syst Evol Microbiol 2018; 68:829–834 [View Article][PubMed]
    [Google Scholar]
  20. Patel S, Gupta RS. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. Int J Syst Evol Microbiol 2020; 70:406–438 [View Article][PubMed]
    [Google Scholar]
  21. Maugeri TL, Gugliandolo C, Caccamo D, Panico A, Lama L et al. A halophilic thermotolerant Bacillus isolated from a marine hot spring able to produce a new exopolysaccharide. Biotechnol Lett 2002; 24:515–519 [View Article]
    [Google Scholar]
  22. Irfan M, Tayyab A, Hasan F, Khan S, Badshah M et al. Production and Characterization of Organic Solvent-Tolerant Cellulase from Bacillus amyloliquefaciens AK9 Isolated from Hot Spring. Appl Biochem Biotechnol 2017; 182:1390–1402 [View Article][PubMed]
    [Google Scholar]
  23. Verma JP, Jaiswal DK, Krishna R, Prakash S, Yadav J et al. Characterization and Screening of Thermophilic Bacillus Strains for Developing Plant Growth Promoting Consortium From Hot Spring of Leh and Ladakh Region of India. Front Microbiol 2018; 9:1293 [View Article][PubMed]
    [Google Scholar]
  24. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  25. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  26. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  28. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  29. Jukes TH, Cantor CR. Evolution of protein molecules. Mammalian protein metabolism 1969; 3:132
    [Google Scholar]
  30. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2 [View Article][PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article][PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  33. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  34. Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A. How many bootstrap replicates are necessary?. J Comput Biol 2010; 17:337–354 [View Article][PubMed]
    [Google Scholar]
  35. Goloboff PA, Farris JS, Nixon KC. Tnt, a free program for phylogenetic analysis. Cladistics 2008; 24:774–786 [View Article]
    [Google Scholar]
  36. Swofford DL. Sinauer Associates 4 Sunderland, MA: 2002. PAUP*. Phylogenetic analysis using parsimony (* and other methods), version.; 2002 p b10
    [Google Scholar]
  37. Stackebrandt E. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  38. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Micr 2014; 64:1825 [View Article]
    [Google Scholar]
  39. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article][PubMed]
    [Google Scholar]
  40. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  41. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article][PubMed]
    [Google Scholar]
  42. Kroppenstedt RM, Goodfellow M. The Family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillospora and Thermomonospora . Prokaryotes: A Handbook on the Biology of Bacteria, Vol 3, 3rd ed. 2006 pp 682–724
    [Google Scholar]
  43. Garg N, Oman TJ, Andrew Wang T-S, De Gonzalo CVG, Walker S et al. Mode of action and structure-activity relationship studies of geobacillin I. J Antibiot 2014; 67:133–136 [View Article][PubMed]
    [Google Scholar]
  44. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  45. Logan NA, Berge O, Bishop AH, Busse H-J, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  46. Sun L, Chen Y, Tian W, Yao L, Chen Z et al. Bacillus acidinfaciens sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2019; 69:1075–1080 [View Article][PubMed]
    [Google Scholar]
  47. Schäffer C, Franck WL, Scheberl A, Kosma P, McDermott TR et al. Classification of isolates from locations in Austria and Yellowstone National Park as Geobacillus tepidamans sp. nov. Int J Syst Evol Microbiol 2004; 54:2361–2368 [View Article][PubMed]
    [Google Scholar]
  48. Habib N, Khan IU, Hussain F, Zhou E-M, Xiao M et al. Meiothermus luteus sp. nov., a slightly thermophilic bacterium isolated from a hot spring. Int J Syst Evol Microbiol 2017; 67:2910–2914 [View Article][PubMed]
    [Google Scholar]
  49. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes . Int J Syst Bacteriol 1970; 20:435–443 [View Article]
    [Google Scholar]
  50. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article][PubMed]
    [Google Scholar]
  51. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Meth 1984; 2:233–241 [View Article]
    [Google Scholar]
  52. Collins MD. Analysis of isoprenoid quinones. Methods Microbiol 1985; 18:329–366
    [Google Scholar]
  53. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: Midi Inc; 1990
    [Google Scholar]
  54. Coorevits A, Logan NA, Dinsdale AE, Halket G, Scheldeman P et al. Bacillus thermolactis sp. nov., isolated from dairy farms, and emended description of Bacillus thermoamylovorans . Int J Syst Evol Microbiol 2011; 61:1954–1961 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004246
Loading
/content/journal/ijsem/10.1099/ijsem.0.004246
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error