1887

Abstract

Eight Gram-stain-positive, rod-shaped bacterial strains were isolated from faeces of Tibetan antelopes on the Tibet-Qinghai Plateau of China. Genomic sequence analysis showed that the strains belong to the genera (strains 299 and 340), (strains 2184, 2185, 2183 and 2189) and (strains 160 and 143), respectively, with a percentage of similarity for the 16S rRNA gene under the species threshold of 98.7 % except for strains 160 and 143 with CAU 1183 (98.8 %). The genome sizes (and genomic G+C contents) were 3.1 Mb (49.4 %), 2.5 Mb (64.9 %), 2.4 Mb (66.1 %) and 4.1 Mb (37.1 %) for the type strains 299, 2183, 2184 and 160, respectively. Two sets of the overall genome relatedness index values between our isolates and their corresponding closely related species were under species thresholds (95 % for average nucleotide identity, and 70 % for digital DNA–DNA hybridization). These results, together with deeper genotypic, genomic, phenotypic and biochemical analyses, indicate that these eight isolates should be classified as representing four novel species. Strain 299 (=CGMCC 1.16320=JCM 33611) is proposed as representing sp. nov.; strain 2184 (=CGMCC 1.16417=DSM 106203) is proposed as representing sp. nov.; strain 2183 (=CGMCC 1.16416=DSM 106264) is proposed as representing sp. nov.; and strain 160 (=CGMCC 1.16367=DSM 106186) is proposed as representing sp. nov.

Funding
This study was supported by the:
  • Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences (Award 2018RU010)
    • Principle Award Recipient: Dong Jin
  • Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences (Award 2018RU010)
    • Principle Award Recipient: Jing Yang
  • Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences (Award 2018RU010)
    • Principle Award Recipient: Shan Lu
  • Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences (Award 2018RU010)
    • Principle Award Recipient: Jianguo Xu
  • Sanming Project of Medicine in Shenzhen (Award SZSM201811071)
    • Principle Award Recipient: Jianguo Xu
  • National Key R&D Program of China (Award 2018YFC1200102)
    • Principle Award Recipient: Dong Jin
  • National Science and Technology Major Project of China (Award 2018ZX10305409-003)
    • Principle Award Recipient: Zhihong Ren
  • National Science and Technology Major Project of China (Award 2018ZX10712001-007)
    • Principle Award Recipient: Jing Yang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004232
2020-06-04
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/6/3763.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004232&mimeType=html&fmt=ahah

References

  1. Harz CO. Actinomyces bovis ein neuer Schimmel in den Geweben des Rindes. Deutsche Zeitschrift für Tiermedizin 1877; 5:125–140
    [Google Scholar]
  2. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-Based Taxonomic Classification of the Phylum Actinobacteria . Front Microbiol 2018; 9:9 [View Article][PubMed]
    [Google Scholar]
  3. An D, Cai S, Dong X. Actinomyces ruminicola sp. nov., isolated from cattle rumen. Int J Syst Evol Microbiol 2006; 56:2043–2048 [View Article][PubMed]
    [Google Scholar]
  4. Hall V, Collins MD, Hutson RA, Inganäs E, Falsen E et al. Actinomyces oricola sp. nov., from a human dental abscess. Int J Syst Evol Microbiol 2003; 53:1515–1518 [View Article][PubMed]
    [Google Scholar]
  5. Palakawong N A S, Pristaš P, Hrehová L, Javorský P, Stams AJM et al. Actinomyces succiniciruminis sp. nov. and Actinomyces glycerinitolerans sp. nov., two novel organic acid-producing bacteria isolated from rumen. Syst Appl Microbiol 2016; 39:445–452 [View Article][PubMed]
    [Google Scholar]
  6. Meng X, Lai X-H, Lu S, Liu S, Chen C et al. Actinomyces tangfeifanii sp. nov., isolated from the vulture Aegypius monachus . Int J Syst Evol Microbiol 2018; 68:3701–3706 [View Article][PubMed]
    [Google Scholar]
  7. Meng X, Lu S, Lai X-H, Wang Y, Wen Y et al. Actinomyces liubingyangii sp. nov. isolated from the vulture Gypaetus barbatus . Int J Syst Evol Microbiol 2017; 67:1873–1879 [View Article][PubMed]
    [Google Scholar]
  8. Meng X, Lu S, Wang Y, Lai X-H, Wen Y et al. Actinomyces vulturis sp. nov., isolated from Gyps himalayensis . Int J Syst Evol Microbiol 2017; 67:1720–1726 [View Article][PubMed]
    [Google Scholar]
  9. Meng X, Wang Y, Lu S, Lai X-H, Jin D et al. Actinomyces gaoshouyii sp. nov., isolated from plateau pika (Ochotona curzoniae). Int J Syst Evol Microbiol 2017; 67:3363–3368 [View Article][PubMed]
    [Google Scholar]
  10. Li J, Lu S, Yang J, Pu J, Lai X-H et al. Actinomyces lilanjuaniae sp. nov., isolated from the faeces of Tibetan antelope (Pantholops hodgsonii) on the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2019; 69:3485–3491 [View Article][PubMed]
    [Google Scholar]
  11. Lehmann KB, Neumann R. Lehmann JF. editor Atlas and Grundriss der Bakteriologie und Lehrbuch der speciellen bakteriologischen Diagnostik, 1st ed. München: 1896
    [Google Scholar]
  12. Li Y-X, Yang S-Z, Feng G-D, Wang Y-H, Zhu H-H. Corynebacterium guangdongense sp. nov., isolated from a contaminated plate. Int J Syst Evol Microbiol 2016; 66:3201–3206 [View Article][PubMed]
    [Google Scholar]
  13. Baumgardt S, Loncaric I, Kämpfer P, Busse H-J. Corynebacterium tapiri sp. nov. and Corynebacterium nasicanis sp. nov., isolated from a tapir and a dog, respectively. Int J Syst Evol Microbiol 2015; 65:3885–3893 [View Article][PubMed]
    [Google Scholar]
  14. Collins MD, Hoyles L, Hutson RA, Foster G, Falsen E. Corynebacterium testudinoris sp. nov., from a tortoise, and Corynebacterium felinum sp. nov., from a Scottish wild cat. Int J Syst Evol Microbiol 2001; 51:1349–1352 [View Article][PubMed]
    [Google Scholar]
  15. Lu J, Nogi Y, Takami H. Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. FEMS Microbiol Lett 2001; 205:291–297 [View Article][PubMed]
    [Google Scholar]
  16. Kim W, Siamphan C, Kim J-H, Sukhoom A. Oceanobacillus arenosus sp. nov., a moderately halophilic bacterium isolated from marine sand. Int J Syst Evol Microbiol 2015; 65:2943–2948 [View Article][PubMed]
    [Google Scholar]
  17. Lee DC, Kang H, Weerawongwiwat V, Kim B, Choi Y-W et al. Oceanobacillus chungangensis sp. nov., isolated from a sand dune. Int J Syst Evol Microbiol 2013; 63:3666–3671 [View Article][PubMed]
    [Google Scholar]
  18. Amoozegar MA, Bagheri M, Makhdoumi A, Nikou MM, Fazeli SAS et al. Oceanobacillus halophilus sp. nov., a novel moderately halophilic bacterium from a hypersaline lake. Int J Syst Evol Microbiol 2016; 66:1317–1322 [View Article][PubMed]
    [Google Scholar]
  19. Namwong S, Tanasupawat S, Lee KC, Lee J-S. Oceanobacillus kapialis sp. nov., from fermented shrimp paste in Thailand. Int J Syst Evol Microbiol 2009; 59:2254–2259 [View Article][PubMed]
    [Google Scholar]
  20. Lee S-Y, Oh T-K, Kim W, Yoon J-H. Oceanobacillus locisalsi sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 2010; 60:2758–2762 [View Article][PubMed]
    [Google Scholar]
  21. Whon TW, Jung M-J, Roh SW, Nam Y-D, Park E-J et al. Oceanobacillus kimchii sp. nov. isolated from a traditional Korean fermented food. J Microbiol 2010; 48:862–866 [View Article][PubMed]
    [Google Scholar]
  22. Zhou S, Wang X, Wang J, Xu L. A preliminary study on timing of the oldest Pleistocene glaciation in Qinghai–Tibetan plateau. Quat. Int 2006; 154-155:44–51 [View Article]
    [Google Scholar]
  23. Ma L, Shao X, Wang Y, Yang Y, Bai Z et al. Molecular cloning, characterization and expression of myoglobin in Tibetan antelope (Pantholops hodgsonii), a species with hypoxic tolerance. Gene 2014; 533:532–537 [View Article][PubMed]
    [Google Scholar]
  24. Bai X, Xiong Y, Lu S, Jin D, Lai X et al. Streptococcus pantholopis sp. nov., isolated from faeces of the Tibetan antelope (Pantholops hodgsonii). Int J Syst Evol Microbiol 2016; 66:3281–3286 [View Article][PubMed]
    [Google Scholar]
  25. Zhou H, Li D, Zhang Y, Yang T, Liu Y et al. Genetic diversity of microsatellite DNA loci of Tibetan antelope (Chiru, Pantholops hodgsonii) in Hoh Xil National Nature Reserve, Qinghai, China. J Genet Genomics 2007; 34:600–607 [View Article][PubMed]
    [Google Scholar]
  26. Luo Y, Wang L, Yang L, Tan M, Wu Y et al. Puppet resting behavior in the Tibetan antelope (Pantholops hodgsonii). PLoS One 2018; 13:13 [View Article]
    [Google Scholar]
  27. Bleisch WV, Buzzard PJ, Zhang H, D, Liu Z et al. Surveys at a Tibetan antelope Pantholops hodgsonii calving ground adjacent to the Arjinshan Nature Reserve, Xinjiang, China: decline and recovery of a population. Oryx 2009; 43:191–196 [View Article]
    [Google Scholar]
  28. Leslie DMJ, Schaller GB, Hodgsonii P. Artiodactyla: Bovidae). Mamm Spe 2008; 817:1–13
    [Google Scholar]
  29. Zhu W, Yang J, Lu S, Lai X-H, Jin D et al. Fudania jinshanensis gen. nov., sp. nov., isolated from faeces of the Tibetan antelope (Pantholops hodgsonii) in China. Int J Syst Evol Microbiol 2019; 69:2942–2947 [View Article][PubMed]
    [Google Scholar]
  30. Tian Z, Lu S, Jin D, Yang J, Pu J et al. Roseomonas wenyumeiae sp. nov., isolated from faeces of Tibetan antelopes (Pantholops hodgsonii) on the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2019; 69:2979–2986 [View Article][PubMed]
    [Google Scholar]
  31. Wang X, Yang J, Lu S, Lai X-H, Jin D et al. Nocardioides houyundeii sp. nov., isolated from Tibetan antelope faeces. Int J Syst Evol Microbiol 2018; 68:3874–3880 [View Article][PubMed]
    [Google Scholar]
  32. Lane DJ. 16s/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York: John Wiley and Sons; 1991 pp 125–175
    [Google Scholar]
  33. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  34. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article][PubMed]
    [Google Scholar]
  35. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [View Article][PubMed]
    [Google Scholar]
  36. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article][PubMed]
    [Google Scholar]
  37. Lowe TM, Chan PP. tRNAscan-SE on-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 2016; 44:W54–W57 [View Article][PubMed]
    [Google Scholar]
  38. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  39. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  40. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  41. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  42. Kolaczkowski B, Thornton JW. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature 2004; 431:980–984 [View Article][PubMed]
    [Google Scholar]
  43. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  44. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28:3150–3152 [View Article][PubMed]
    [Google Scholar]
  45. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article][PubMed]
    [Google Scholar]
  46. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 2012; 61:1061–1067 [View Article][PubMed]
    [Google Scholar]
  47. Braun MS, Zimmermann S, Danner M, Rashid H-or, Wink M. Corynebacterium uropygiale sp. nov., isolated from the preen gland of Turkeys (Meleagris gallopavo). Syst Appl Microbiol 2016; 39:88–92 [View Article][PubMed]
    [Google Scholar]
  48. Li J, Yang J, Lu S, Jin D, Lai X-H et al. Mycetocola zhujimingii sp. nov., isolated from faeces of Tibetan antelopes (Pantholops hodgsonii). Int J Syst Evol Microbiol 2019; 69:1117–1122 [View Article][PubMed]
    [Google Scholar]
  49. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  50. Ventosa A, Marquez MC, Kocur M, Tindall BJ. Comparative study of "Micrococcus sp." strains CCM 168 and CCM 1405 and members of the genus Salinicoccus . Int J Syst Bacteriol 1993; 43:245–248 [View Article][PubMed]
    [Google Scholar]
  51. Watanabe M, Aoyagi Y, Ohta A, Minnikin DE. Structures of phenolic glycolipids from Mycobacterium kansasii . Eur J Biochem 1997; 248:93–98 [View Article][PubMed]
    [Google Scholar]
  52. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [View Article][PubMed]
    [Google Scholar]
  53. Schleifer KH, Seidl PH. Chemical Composition and Structure of Murein. Chemical Methods in Bacterial Systematics London: Goodfellow M and Minnikin DE; 1985 pp 201–219
    [Google Scholar]
  54. Hall V, Collins MD, Lawson PA, Falsen E, Duerden BI. Actinomyces dentalis sp. nov., from a human dental abscess. Int J Syst Evol Microbiol 2005; 55:427–431 [View Article][PubMed]
    [Google Scholar]
  55. Hirota K, Hanaoka Y, Nodasaka Y, Yumoto I. Oceanobacillus polygoni sp. nov., a facultatively alkaliphile isolated from indigo fermentation fluid. Int J Syst Evol Microbiol 2013; 63:3307–3312 [View Article][PubMed]
    [Google Scholar]
  56. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  57. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  58. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the bacteria and archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004232
Loading
/content/journal/ijsem/10.1099/ijsem.0.004232
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error