gen. nov., sp. nov., isolated from coastal seawater Free

Abstract

A Gram-stain-negative, aerobic, gliding, rod-shaped (0.2–0.5×1.0-13.0 µm) and yellow-pigmented bacterium, designated PLHSN227, was isolated from seawater collected near the coast of Yantai, PR China. PLHSN227 was found to grow at 15–37 °C (optimum, 28–30 °C) and pH 6.0–8.5 (optimum, 6.5–7.5) in the presence of 2–14 % (w/v) NaCl (optimum, 5.0 %). Phylogenetic analysis of the 16S rRNA gene sequences revealed that PLHSN227 represented a member of the family and exhibited the highest sequence similarity (94.6 %) to the type strain NBRC 100249. The chemotaxonomic analysis revealed that the sole respiratory quinone was menaquinone 6 (MK-6) and the major fatty acids included Cω8, iso-C, anteiso-C, C and summed feature 8 (Cω7 and/or Cω6). The major polar lipids included phosphatidylethanolamine, one unidentified aminolipid and two unidentified lipids. The DNA G+C content of PLHSN227 was 35.6 mol%. PLHSN227 showed the highest average amino acid identity value of 67.2 %, the average nucleotide identity value of 75.6 and 14.5 % digital DNA–DNA hybridization identity with DSM 15361. According to the phylogenetic data, PLHSN227 formed a distinct clade in the phylogenetic tree. On the basis of phenotypic, chemotaxonomic and phylogenetic data, it is considered that PLHSN227 represents a novel genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain is PLHSN227 (=KCTC 72159=MCCC 1H00371).

Funding
This study was supported by the:
  • the National Natural Science Foundation of China (Award 31770002)
    • Principle Award Recipient: Zong-Jun Du
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004228
2020-05-22
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/6/3740.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004228&mimeType=html&fmt=ahah

References

  1. O'Sullivan LA, Rinna J, Humphreys G, Weightman AJ, Fry JC. Culturable phylogenetic diversity of the phylum 'Bacteroidetes' from river epilithon and coastal water and description of novel members of the family Flavobacteriaceae: Epilithonimonas tenax gen. nov., sp. nov. and Persicivirga xylanidelens gen. nov., sp. nov. Int J Syst Evol Microbiol 2006; 56:169–180 [View Article][PubMed]
    [Google Scholar]
  2. Jooste PJ, Britz TJ, De Haast J. A numerical taxonomic study of Flavobacterium–Cytophaga strains from dairy sources. J Appl Bacteriol 1985; 59:311–323 [View Article][PubMed]
    [Google Scholar]
  3. Reichenbach H. Flavobacteriaceae fam. nov. in validation of the publication of new names and new combinations previously effectively published outside the IJSB, List no. 41. Int J Syst Bacteriol 1992; 42:327–329
    [Google Scholar]
  4. Bernardet JF, Segers P, Vancanneyt M, Berthe F, Kersters K et al. Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis STROHL and Tait 1978). Int J Syst Bacteriol 1996; 46:128–148 [View Article]
    [Google Scholar]
  5. Bernardet J-F, Nakagawa Y, Holmes B. Subcommittee On The Taxonomy Of Flavobacterium And Cytophaga-Like Bacteria Of The International Committee On Systematics Of Prokaryotes . Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049 [View Article][PubMed]
    [Google Scholar]
  6. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article][PubMed]
    [Google Scholar]
  7. Wang G, Zhou D, Dai S, Tian X, Li J et al. Pustulibacterium marinum gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from the Bashi Channel. Int J Syst Evol Microbiol 2013; 63:3056–3061 [View Article][PubMed]
    [Google Scholar]
  8. Kirchman D. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol 2002; 39:91–100 [View Article]
    [Google Scholar]
  9. Lee H-S, Kwon KK, Yang S-H, Bae SS, Park CH et al. Description of Croceitalea gen. nov. in the family Flavobacteriaceae with two species, Croceitalea eckloniae sp. nov. and Croceitalea dokdonensis sp. nov., isolated from the rhizosphere of the marine alga Ecklonia kurome . Int J Syst Evol Microbiol 2008; 58:2505–2510 [View Article]
    [Google Scholar]
  10. Liu Q-Q, Wang Y, Li J, Du Z-J, Chen G-J. Saccharicrinis carchari sp. nov., isolated from a shark, and emended descriptions of the genus Saccharicrinis and Saccharicrinis fermentans . Int J Syst Evol Microbiol 2014; 64:2204–2209 [View Article]
    [Google Scholar]
  11. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article]
    [Google Scholar]
  12. Li H, Gao J, Liu H, Liu H, Liang A et al. The architecture and complete sequence of mitochondrial genome of an assassin bug Agriosphodrus dohrni (Hemiptera: Reduviidae). Int J Biol Sci 2011; 7:792–804 [View Article]
    [Google Scholar]
  13. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  16. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  18. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article]
    [Google Scholar]
  19. Li R, Yu C, Li Y, Lam T-W, Yiu S-M et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 2009; 25:1966–1967 [View Article]
    [Google Scholar]
  20. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D et al. Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. Omi A J Integr Biol 2008; 12:137–141 [View Article]
    [Google Scholar]
  21. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44:D457–D462 [View Article]
    [Google Scholar]
  22. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article]
    [Google Scholar]
  23. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 2003; 4:41 [View Article]
    [Google Scholar]
  24. Rodriguez-R LM, Konstantinidis KT, Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [View Article]
    [Google Scholar]
  25. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article]
    [Google Scholar]
  26. Luke S. Two fast tree-creation algorithms for genetic programming. IEEE Trans. Evol. Computat. 2000; 4:274–283 [View Article]
    [Google Scholar]
  27. Ivica L, Peer B. Interactive tree of life (iTOL) V4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259
    [Google Scholar]
  28. Fournier M, Dermoun Z, Durand M-C, Dolla A. A new function of the Desulfovibrio vulgaris Hildenborough [Fe] hydrogenase in the protection against oxidative stress. J Biol Chem 2004; 279:1787–1793 [View Article][PubMed]
    [Google Scholar]
  29. Nordin N, Guskov A, Phua T, Sahaf N, Xia Y et al. Exploring the structure and function of Thermotoga maritima CorA reveals the mechanism of gating and ion selectivity in Co2+/Mg2+ transport. Biochem J 2013; 451:365–374 [View Article]
    [Google Scholar]
  30. Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Bell ME et al. Division of the genus Chryseobacterium: Observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens.. Int J Syst Evol Microbiol 2020
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  32. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article]
    [Google Scholar]
  33. Aygan A, Arikan B. An overview on bacterial motility detection. Int J Agr Biol 2007; 9:193–196
    [Google Scholar]
  34. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article]
    [Google Scholar]
  35. Smibert RM, Krieg NR. Phenotypic characterization. In Gerbardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  36. Xia H-F, Li X-L, Liu Q-Q, Miao T-T, Du Z-J et al. Salegentibacter echinorum sp. nov., isolated from the sea urchin Hemicentrotus pulcherrimus . Antonie van Leeuwenhoek 2013; 104:315–320 [View Article][PubMed]
    [Google Scholar]
  37. Hameed A, Shahina M, Lin S-Y, Sridhar KR, Young L-S et al. Siansivirga zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing member of the family Flavobacteriaceae isolated from coastal seawater of Taiwan. FEMS Microbiol Lett 2012; 333:37–45 [View Article]
    [Google Scholar]
  38. ZJ D, Wang Y, Dunlap C, Rooney AP, Chen GJ. Draconibacterium orientale gen. nov., sp. nov., isolated from two distinct marine environments, and proposal of Draconibacteriaceae fam. nov. Int J Syst Evol Microbiol 2014; 64:1690–1696
    [Google Scholar]
  39. CLSI Performance Standards for Antimicrobial Susceptibility Testing, 28th ed. Clinical and Laboratory Standards Institute; 2018
    [Google Scholar]
  40. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  41. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  42. Reinerm K. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367
    [Google Scholar]
  43. Athalye M, Noble WC, Minnikin DE. Analysis of cellular fatty acids by gas chromatography as a tool in the identification of medically important coryneform bacteria. J Appl Bacteriol 1985; 58:507–512 [View Article]
    [Google Scholar]
  44. McCammon SA, Bowman JP. Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov., and Flavobacterium xanthum sp. nov., nom. rev. and reclassification of [Flavobacterium] salegens as Salegentibacter salegens gen. nov., comb. nov. Int J Syst Evol Microbiol 2000; 50:1055–1063 [View Article]
    [Google Scholar]
  45. Nedashkovskaya OI et al. Mesonia algae gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the green alga Acrosiphonia sonderi (Kutz) Kornm. Int J Syst Evol Microbiol 2003; 53:1967–1971 [View Article]
    [Google Scholar]
  46. Qin Q-L, Zhao D-L, Wang J, Chen X-L, Dang H-Y et al. Wangia profunda gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from southern Okinawa Trough deep-sea sediment. FEMS Microbiol Lett 2010; 271:53–58 [View Article]
    [Google Scholar]
  47. Fidalgo C, Martins R, Proença DN, Morais PV, Alves A et al. Zunongwangia endophytica sp. nov., an endophyte isolated from the salt marsh plant, Halimione portulacoides, and emended description of the genus Zunongwangia . Int J Syst Evol Microbiol 2017; 67:3004–3009 [View Article]
    [Google Scholar]
  48. Bowman JP, McCammon SA, Lewis T, Skerratt JH, Brown JL et al. Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology 1998; 144:1601–1609 [View Article][PubMed]
    [Google Scholar]
  49. Zhong Z-P, Liu Y, Wang F, Zhou Y-G, Liu H-C et al. Psychroflexus salis sp. nov. and Psychroflexus planctonicus sp. nov., isolated from a salt lake. Int J Syst Evol Microbiol 2016; 66:125131 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004228
Loading
/content/journal/ijsem/10.1099/ijsem.0.004228
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed