1887

Abstract

A moderately halophilic strain, designated SCU50, was recovered from a saline soil sample and characterized by a polyphasic approach. The 16S rRNA gene sequence analysis showed that strain SCU50 belonged to the genus and was most closely related to TP2-8 (98.1 % similarity) and XH-63 (97.7 %). Genomic average nucleotide identity and digital DNA–DNA hybridization analyses confirmed the separate species status of the new isolate relative to other recognized species. The genome size was about 5.09 Mbp and the DNA G+C content was 36.7 mol%. The strain grew optimally at 10–15 % (w/v) NaCl, pH 6.5–7.5 and 25–30 °C. It contained anteiso-C, iso-C and anteiso-C as the dominant fatty acids and menaquinone-7 as the major respiratory quinone. The polar lipid profile was examined and found to comprise diphosphatidylglycerol, phosphatidylglycerol, one unidentified phospholipid and one unidentified lipid. The cell-wall peptidoglycan type was A1γ based on -diaminopimelic acid. Combining the data from phenotypic, chemotaxonomic, genomic and phylogenetic characterization, it was concluded that strain SCU50 should be assigned as representing a novel species within the genus . Thus, a novel taxon named sp. nov. was first established, with SCU50 (=CGMCC 1.17336=KCTC 43107) as the type strain.

Funding
This study was supported by the:
  • Opening Project of Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education (Award 20826041C4159)
    • Principle Award Recipient: Yongqiang Tian
  • National Key Research and Development Program of China (Award 2018YFC1802201)
    • Principle Award Recipient: Yongqiang Tian
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004224
2020-05-15
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/6/3701.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004224&mimeType=html&fmt=ahah

References

  1. Wainø M, Tindall BJ, Schumann P, Ingvorsen K. Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 1999; 49:821–831 [View Article][PubMed]
    [Google Scholar]
  2. Parte AC. LPSN--list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [View Article][PubMed]
    [Google Scholar]
  3. Carrasco IJ, Márquez MC, Yanfen X, Ma Y, Cowan DA et al. Gracilibacillus orientalis sp. nov., a novel moderately halophilic bacterium isolated from a salt lake in Inner Mongolia, China. Int J Syst Evol Microbiol 2006; 56:599–604 [View Article][PubMed]
    [Google Scholar]
  4. Kim P, Lee J-C, Park D-J, Shin K-S, Kim J-Y et al. Gracilibacillus bigeumensis sp. nov., a moderately halophilic bacterium from solar saltern soil. Int J Syst Evol Microbiol 2012; 62:1857–1863 [View Article][PubMed]
    [Google Scholar]
  5. Chamroensaksri N, Tanasupawat S, Akaracharanya A, Visessanguan W, Kudo T et al. Gracilibacillus thailandensis sp. nov., from fermented fish (pla-ra). Int J Syst Evol Microbiol 2010; 60:944–948 [View Article][PubMed]
    [Google Scholar]
  6. Huo Y-Y, Xu X-W, Cui H-L, Wu M. Gracilibacillus ureilyticus sp. nov., a halotolerant bacterium from a saline-alkaline soil. Int J Syst Evol Microbiol 2010; 60:1383–1386 [View Article][PubMed]
    [Google Scholar]
  7. Lawson PA, Deutch CE, Collins MD. Phylogenetic characterization of a novel salt-tolerant Bacillus species: description of Bacillus dipsosauri sp. nov. J Appl Bacteriol 1996; 81:109–112 [View Article][PubMed]
    [Google Scholar]
  8. Gan L, Zhang H, Tian J, Li X, Long X et al. Planococcus salinus sp. nov., a moderately halophilic bacterium isolated from a saline-alkali soil. Int J Syst Evol Microbiol 2018; 68:589–595 [View Article][PubMed]
    [Google Scholar]
  9. Schaeffer AB, Fulton MD. A simplified method of staining endospores. Science 1933; 77:194 [View Article][PubMed]
    [Google Scholar]
  10. Gan L, Zhang Y, Zhang L, Li X, Wang Z et al. Planococcus halotolerans sp. nov., isolated from a saline soil sample in China. Int J Syst Evol Microbiol 2018; 68:3500–3505 [View Article][PubMed]
    [Google Scholar]
  11. Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981
    [Google Scholar]
  12. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 2002; 25:360–375 [View Article][PubMed]
    [Google Scholar]
  13. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  14. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  15. Xiang W, Liu C, Wang X, Du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011; 61:1165–1169 [View Article][PubMed]
    [Google Scholar]
  16. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  17. Collins MD. Analysis of isoprenoid quinones. Methods Microbiol 1985; 18:329–366
    [Google Scholar]
  18. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article][PubMed]
    [Google Scholar]
  19. Gan L, Zhang Y, Tang R, Liu B, Wang S et al. Genomic characterization of a potentially novel Streptococcus species producing exopolysaccharide. 3 Biotech 2019; 9:132 [View Article][PubMed]
    [Google Scholar]
  20. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R et al. Circos: an information aesthetic for comparative genomics. Genome Res 2009; 19:1639–1645 [View Article][PubMed]
    [Google Scholar]
  21. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  22. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V et al. Refseq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018; 46:D851–D860 [View Article][PubMed]
    [Google Scholar]
  23. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015; 5:8365 [View Article][PubMed]
    [Google Scholar]
  24. Galperin MY, Makarova KS, Wolf YI, Koonin EV. Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 2015; 43:D261–D269 [View Article][PubMed]
    [Google Scholar]
  25. Blin K, Shaw S, Steinke K, Villebro R, Ziemert N et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 2019; 47:W81–W87 [View Article][PubMed]
    [Google Scholar]
  26. Schwibbert K, Marin-Sanguino A, Bagyan I, Heidrich G, Lentzen G et al. A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581 T. Environ Microbiol 2011; 13:1973–1994 [View Article][PubMed]
    [Google Scholar]
  27. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  29. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  30. Gan L, Zhang S, Zhang Y, He S, Tian Y. Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by a halotolerant Bacillus endophyticus SCU-L. Prep Biochem Biotechnol 2018; 48:582–588 [View Article][PubMed]
    [Google Scholar]
  31. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  32. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  33. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  34. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  35. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  36. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  37. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  38. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article][PubMed]
    [Google Scholar]
  39. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  40. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article][PubMed]
    [Google Scholar]
  41. Hirota K, Hanaoka Y, Nodasaka Y, Yumoto I. Gracilibacillus alcaliphilus sp. nov., a facultative alkaliphile isolated from indigo fermentation liquor for dyeing. Int J Syst Evol Microbiol 2014; 64:3174–3180 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004224
Loading
/content/journal/ijsem/10.1099/ijsem.0.004224
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error