1887

Abstract

A novel archaeal strain designated as SPP-AMP-1 was isolated from saltpan soil, using the serial dilution method on a halophilic archaeal medium supplemented with ampicillin. Cells were both rod-shaped and pleomorphic in nature, non-motile, unable to produce acid from a variety of sugars or grow anaerobically with different substrates (-arginine) and electron acceptors (DMSO, nitrate). Optimal growth was observed at 42 °C, 3.4–4.2 M NaCl and pH 7.2. Cells did not lyse in distilled water and grew in the absence of Mg ions. Phylogenetic analysis based on the sequences of 16S rRNA gene, amino acid sequence of β′-subunit of RNA polymerase and 400 conserved proteins retrieved from the whole genome assemblies showed that strain SPP-AMP-1 was distantly related to any existing genera within the family . MK-8 was the only quinone detected. Polar lipid analysis showed a unique combination of diethyl derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, glycosyl-mannosyl-glucosyl diether and sulphated glycosyl-mannosyl-glucosyl diether as the major lipids. The G+C content of genomic DNA is 57.7 mol%. The phenotypic, phylogenetic and genomic data supported the concept of the novel genus status of strain SPP-AMP-1 in the family for which the name gen. nov., sp. nov., is proposed; the type strain is SPP-AMP-1 (=JCM 31368=KCTC 4276=MTCC 12579).

Funding
This study was supported by the:
  • Department of Biotechnology, Ministry of Science and Technology (Award BT/PR7368/INF/22/177/2012)
    • Principle Award Recipient: Srinivasan Krishnamurthi
  • Council of Scientific and Industrial Research, India (Award BSC0402)
    • Principle Award Recipient: Srinivasan Krishnamurthi
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004222
2020-05-18
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/6/3693.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004222&mimeType=html&fmt=ahah

References

  1. Oren A, Ventosa A. International Committee on Systematics of Prokaryotes subcommittee on the taxonomy of Halobacteria and subcommittee on the taxonomy of Halomonadaceae. Minutes of the joint open meeting, 26 June 2019, Cluj-Napoca, Romania. Int J Syst Evol Microbiol 2019; 69:3657–3661 [View Article][PubMed]
    [Google Scholar]
  2. Arahal DR, Oren A, Ventosa A. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Halobacteria and Subcommittee on the taxonomy of Halomonadaceae. Minutes of the joint open meeting, 11 July 2017, Valencia, Spain. Int J Syst Evol Microbiol 2017; 67:4279–4283 [View Article]
    [Google Scholar]
  3. Han D, Cui H-L. Salinibaculum litoreum gen. nov., sp. nov., isolated from salted brown alga Laminaria . Int J Syst Evol Microbiol 2020 [View Article][PubMed]
    [Google Scholar]
  4. Sorokin DY, Kublanov IV, Yakimov MM, Rijpstra WIC, Sinninghe Damsté JS. Halanaeroarchaeum sulfurireducens gen. nov., sp. nov., the first obligately anaerobic sulfur-respiring haloarchaeon, isolated from a hypersaline lake. Int J Syst Evol Microbiol 2016; 66:2377–2381 [View Article]
    [Google Scholar]
  5. Sorokin DY, Messina E, Smedile F, Roman P, Damsté JSS et al. Discovery of anaerobic lithoheterotrophic haloarchaea, ubiquitous in hypersaline habitats. Isme J 2017; 11:1245–1260 [View Article]
    [Google Scholar]
  6. Grant WD, Kamekura M, McGenity TJ, Ventosa A. Class III. Halobacteria class. nov. In Boone DR, Castenholz RW, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology 2, 2nd ed. New York: Springer; 2001 pp 294–334
    [Google Scholar]
  7. Oren A, Ventosa A, Kamekura M. Halobacteriaceae. In Bergey's Manual of Systematics of Archaea and Bacteria (eds Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J, DeVos P, Hedlund B, and Dedysh S) 2017
    [Google Scholar]
  8. Mancinelli RL, Hochstein LI. The occurrence of denitrification in extremely halophilic bacteria. FEMS Microbiol Lett 1986; 35:55–58 [View Article]
    [Google Scholar]
  9. Gupta RS, Naushad S, Baker S. Phylogenomic analyses and molecular signatures for the class Halobacteria and its two major clades : a proposal for division of the class Halobacteria into an emended order Halobacteriales and two new orders. Haloferacales ord. nov. and Natrialbales or 20151050–1069
    [Google Scholar]
  10. Kester DR, Duedall IW, Connors DN, Pytkowicz RM. Preparation of artificial seawater. Limnol Oceanogr 1967; 12:176–179 [View Article]
    [Google Scholar]
  11. Oren A, Ventosa A, Grant WD. Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 1997; 47:233–238 [View Article]
    [Google Scholar]
  12. Murray RGE, Brenner DJ, Colwell RR, De Vos P, Goodfellow M et al. Report of the ad hoc Committee on Approaches to Taxonomy within the Proteobacteria . Int J Syst Bacteriol 1990; 40:213–215 [View Article]
    [Google Scholar]
  13. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Wshington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  14. Verma A, Pal Y, Ojha AK, Kumari M, Khatri I et al. Taxonomic insights into the phylogeny of Bacillus badius and proposal for its reclassification to the genus Pseudobacillus as Pseudobacillus badius comb. nov. and reclassification of Bacillus wudalianchiensis Liu et al., 2017 as Pseudobacillus wudalianchiensis comb. nov. Syst Appl Microbiol 2019; 42:360–372 [View Article]
    [Google Scholar]
  15. Dussault HP. An improved technique for staining red halophilic bacteria. J Bacteriol 1955; 70:484–485 [View Article]
    [Google Scholar]
  16. WM X, JQ X, Zhou Y, Li Y, ZZ et al. Halomarina salina sp. nov., isolated from a marine solar saltern. Antonie van Leeuwenhoek 2016; 109:1121–1126
    [Google Scholar]
  17. Inoue K, Itoh T, Ohkuma M, Kogure K. Halomarina oriensis gen. nov., sp. nov., a halophilic archaeon isolated from a seawater aquarium. Int J Syst Evol Microbiol 2011; 61:942–946 [View Article]
    [Google Scholar]
  18. Smibert RM, Krieg KN. General characterization. In Gerhardt P R, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Bacteriology Washington, DC: 1981 pp 409–443
    [Google Scholar]
  19. Kroppenstedt RM. Classification and Identification Method for Bacteria. Chemotaxonomy of Bacteria Braunschweig, Germany: DSMZ; 1998 pp 23–28
    [Google Scholar]
  20. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article]
    [Google Scholar]
  21. Kates M. Techniques of Lipidology, 2nd edn. Amsterdam: Elsevier; 1986 pp 106–107
    [Google Scholar]
  22. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  23. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [View Article]
    [Google Scholar]
  24. Ojha AK, Verma A, Pal Y, Bhatt D, Mayilraj S et al. Marinomonas epiphytica sp. nov., isolated from a marine intertidal macroalga. Int J Syst Evol Microbiol 2017; 67:2746–2751 [View Article]
    [Google Scholar]
  25. Dojka MA, Hugenholtz P, Haack SK, Pace NR. Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 1998; 64:3869–3877 [View Article]
    [Google Scholar]
  26. Baker GC, Smith JJ, Cowan DA. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 2003; 55:541–555 [View Article]
    [Google Scholar]
  27. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  28. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article]
    [Google Scholar]
  29. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article]
    [Google Scholar]
  30. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article]
    [Google Scholar]
  31. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [View Article]
    [Google Scholar]
  32. Rodriguez RLM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016; 4:e1900v1
    [Google Scholar]
  33. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  34. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 2013; 4:2304 [View Article]
    [Google Scholar]
  35. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article]
    [Google Scholar]
  36. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article]
    [Google Scholar]
  37. Letunic I, Bork P. Interactive tree of life (iTOL) V3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [View Article]
    [Google Scholar]
  38. Purdy KJ, Cresswell-Maynard TD, Nedwell DB, McGenity TJ, Grant WD et al. Isolation of haloarchaea that grow at low salinities. Environ Microbiol 2004; 6:591–595 [View Article]
    [Google Scholar]
  39. Mori K, Nurcahyanto DA, Kawasaki H, Lisdiyanti P et al. Halobium palmae gen. nov., sp. nov., an extremely halophilic archaeon isolated from a solar saltern. Int J Syst Evol Microbiol 2016; 66:3799–3804 [View Article]
    [Google Scholar]
  40. Cui H-L, ZZ, Li Y, Zhou Y. Salinirussus salinus gen. nov., sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 2017; 67:3622–3626 [View Article]
    [Google Scholar]
  41. Hou J, Zhao Y-J, Zhu L, Cui H-L. Salinirubellus salinus gen. nov., sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 2018; 68:1874–1878 [View Article]
    [Google Scholar]
  42. Minegishi H, Echigo A, Nagaoka S, Kamekura M, Usami R. Halarchaeum acidiphilum gen. nov., sp. nov., a moderately acidophilic haloarchaeon isolated from commercial solar salt. Int J Syst Evol Microbiol 2010; 60:2513–2516 [View Article]
    [Google Scholar]
  43. Barco RA, Garrity GM, Scott JJ, Amend JP, Nealson KH et al. A genus definition for bacteria and Archaea based on a standard genome relatedness index. mBio 2020; 11: [View Article]
    [Google Scholar]
  44. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425
    [Google Scholar]
  45. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791
    [Google Scholar]
  46. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  47. Zuckerkandl E, Pauling L. Evolutionary divergence and convergence in proteins. Evol Genes Proteins 201497–166
    [Google Scholar]
  48. Gruber C, Legat A, Pfaffenhuemer M, Radax C, Weidler G et al. Halobacterium noricense sp. nov., an archaeal isolate from a bore core of an alpine Permian salt deposit, classification of Halobacterium sp. NRC-1 as a strain of H. salinarum and emended description of H. salinarum . Extremophiles 2004; 8:431–439 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004222
Loading
/content/journal/ijsem/10.1099/ijsem.0.004222
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error