1887

Abstract

Twenty-nine isolates of an unknown haemophilic organism were isolated from the lungs of pigs from 14 farms in Australia. Phylogenetic analyses based on the 16S rRNA gene, and showed a monophyletic group that was most closely related to and [] . Whole genome sequence analysis indicated that the and this group, using the type strain HS4635 for comparison, showed a similarity of 30.9 % DNA–DNA renaturation. The isolates were Gram-stain-negative, NAD-dependent, CAMP-negative and were oxidase-positive, catalase-negative and produced indole but not urease. The isolates could be separated from all currently recognized haemophilic and non-haemophilic members of the family . Key phenotypic properties were the production of indole, the lack of urease activity, production of β-galactosidase but not α-fucosidase, acid formation from (−)--arabinose, (+)--galactose, maltose and trehalose and a failure to produce acid from (−)--mannitol. Taken together, these data indicate that the isolates belong to a novel species for which the name sp. nov. is proposed. The type strain is HS4635 (=CCUG 71931 and LMG 30645).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004221
2020-05-15
2020-06-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/10.1099/ijsem.0.004221/ijsem004221.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004221&mimeType=html&fmt=ahah

References

  1. Christensen H, Kuhnert P, Nørskov-Lauritsen N, Planet PJ, Bisgaard M. Family Pasteurellaceae. In Stackebrandt E, Rosenberg E, Delong E, Lory S, Thompson F. (editors) The Prokaryotes 9, 4th ed. New York: Springer; 2014 pp 535–564
    [Google Scholar]
  2. Gottschalk M, Broes A. Actinobacillosis. In Zimmerman J, Karriker LA, Ramirez A, Schwartz KJ, Stevenson G et al. (editors) Diseases of Swine, 11th ed. Ames, Iowa: Wiley-Blackwell; 2019 pp 749–766
    [Google Scholar]
  3. Dickerman AW, Bandara AB, Inzana TI. Phylogenomic analysis of Haemophilus parasuis and proposed reclassification to Glaesserella parasuis, gen. nov., comb. nov. Int J Sys Evol Microbiol 2019
    [Google Scholar]
  4. Aragon V, Segales J, Tucker AWD. Glässer’s disease. In Zimmermann JJ, Karriker LA, Ramirez M, Schwatrz KJ, Stevenson GW et al. (editors) Diseases of Swine, 11th ed. Ames, Iowa: Wiley-Blackwell; 2019 pp 844–8853
    [Google Scholar]
  5. Møller K, Fussing V, Grimont PA, Paster BJ, Dewhirst FE et al. Actinobacillus minor sp. nov., Actinobacillus porcinus sp. nov., and Actinobacillus indolicus sp. nov., three new V factor-dependent species from the respiratory tract of pigs. Int J Syst Bacteriol 1996; 46:951–956 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  6. Chiers K, Haesebrouck F, Mateusen B, Van Overbeke I, Ducatelle R. Pathogenicity of Actinobacillus minor, Actinobacillus indolicus and Actinobacillus porcinus strains for gnotobiotic piglets. J Vet Med B Infect Dis Vet Public Health 2001; 48:127–131 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  7. Biberstein EL, Gunnarsson A, Hurvell B. Cultural and biochemical criteria for the identification of Haemophilus spp from swine. Am J Vet Res 1977; 38:7–11[PubMed][PubMed]
    [Google Scholar]
  8. Arya G, Niven DF. Production of haemolysins by strains of the Actinobacillus minor/ porcitonsillarum complex. Vet Microbiol 2010; 141:332–341 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  9. Gottschalk M, Broes A, Mittal KR, Kobisch M, Kuhnert P et al. Non-pathogenic Actinobacillus isolates antigenically and biochemically similar to Actinobacillus pleuropneumoniae: a novel species?. Vet Microbiol 2003; 92:87–101 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  10. Ohba T, Shibahara T, Kobayashi H, Takashima A, Minami Y et al. Granulomatous lymphadenitis and pneumonia associated with Actinobacillus porcitonsillarum in a slaughter pig. J Comp Pathol 2007; 137:82–86 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  11. Martínez E, Maldonado J. Pulmonary isolation of Actinobacillus porcitonsillarum in pigs in Europe. Vet Rec 2006; 159:642–643 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  12. Turni C, Blackall PJ. An evaluation of the apxIVA based PCR-REA method for differentiation of Actinobacillus pleuropneumoniae. Vet Microbiol 2007; 121:163–169 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  13. Angen O, Oliveira S, Ahrens P, Svensmark B, Leser TD. Development of an improved species specific PCR test for detection of Haemophilus parasuis. Vet Microbiol 2007; 119:266–276 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  14. Oliveira S, Galina L, Pijoan C. Development of a PCR test to diagnose Haemophilus parasuis infections. J Vet Diagn Invest 2001; 13:495–501 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  15. Kuhnert P, Korczak BM. Prediction of whole-genome DNA–DNA similarity, determination of G+C content and phylogenetic analysis within the family Pasteurellaceae by multilocus sequence analysis (MLSA). Microbiol 2006; 152:2537–2548 [CrossRef]
    [Google Scholar]
  16. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  17. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  18. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  19. Blackall PJ, Reid GG. Further characterization of Haemophilus paragallinarum and Haemophilus avium. Vet Microbiol 1982; 7:359–367 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  20. Blackall PJ. An evaluation of methods for the detection of carbohydrate fermentation in avian Haemophilus species. J Microbiol Methods 1983; 1:275–281 [CrossRef]
    [Google Scholar]
  21. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [CrossRef]
    [Google Scholar]
  22. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010a; 2:117–134 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  23. Auch AF, Klenk H-P, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010b; 2:142–148 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  24. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc Committee on reconciliation of approaches to bacterial Systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
  25. Devenish J, Brown JE, Rosendal S. Association of the RTX proteins of Actinobacillus pleuropneumoniae with hemolytic, CAMP, and neutrophil-cytotoxic activities. Infect Immun 1992; 60:2139–2142 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  26. Donà V, Perreten V. Comparative Genomics of the First and Complete Genome of “ Actinobacillus porcitonsillarum ” Supports the Novel Species Hypothesis. Int J Genomics 2018; 2018:8 pages8 [CrossRef]
    [Google Scholar]
  27. Frey J, Bosse JT, Chang YF, Cullen JM, Fenwick B et al. Actinobacillus pleuropneumoniae RTX-toxins: uniform designation of haemolysins, cytolysins, pleurotoxin and their genes. J Gen Microbiol 1993; 139:1723–1728 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  28. Watt AE, Browning GF, Legione AR, Bushell RN, Stent A et al. A novel Glaesserella sp. isolated from pigs with severe respiratory infections has a mosaic genome with virulence factors putatively acquired by horizontal transfer. Appl Environ Microbiol 2018; 84:e00092-18 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  29. Møller K, Kilian M. V factor-dependent members of the family Pasteurellaceae in the porcine upper respiratory tract. J Clin Microbiol 1990; 28:2711–2716 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  30. Tonpitak W, Rohde J, Gerlach G. Prevalence of “Actinobacillus porcitonsillarum” in porcine tonsils and development of a diagnosis duplex PCR differentiating between “Actinobacillus porcitonsillarum” and Actinobacillus pleuropneumoniae. Vet Microbiol 2007; 122:157–165 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004221
Loading
/content/journal/ijsem/10.1099/ijsem.0.004221
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error