Skip to content
1887

Abstract

A bacteria strain, designated CFH 90008, was isolated from a salt lake sediment sample collected from Yuncheng city, Shanxi Province, PR China. Strain CFH 90008 was Gram-stain-negative, strictly aerobic, motile with lateral flagella and rod-shaped. Colonies were yellow, circular and smooth. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain CFH 90008 belonged to the genus , showing highest sequence similarity to DQD2-30 (98.6 %), LCB169 (98.5 %), FB2 (98.1 %) and AIR-2 (98.0 %). Good growth was observed at 10–50 °C, pH 6.0–9.0 and with NaCl concentration from 1.0 to 12.0 % (w/v). The predominant quinone was Q9. The major fatty acid (>10 %) was C ω7, C and C ω7. The genome of strain CFH 90008 was 4.36 Mbp with a genomic DNA G+C content of 66.7 mol%. Based on low average nucleotide identity and DNA–DNAhybridization results, chemotaxonomic characteristics, and differential physiological properties, strain CFH 90008 could not be classified into any recognized species of the genus . Therefore, a new species, for which the name sp. nov. is proposed. The type strain is CFH 90008 (=DSM 103220=KCTC 52281).

Funding
This study was supported by the:
  • Natural Science Foundation of China (Award 3150004)
    • Principle Award Recipient: Hong Ming
  • Doctor Scientific Research Fund of Xinxiang Medical University (Award XYBSKYZZ201625)
    • Principle Award Recipient: Hong Ming
  • Henan Province University youth researcher support project (Award 2017GGJS106)
    • Principle Award Recipient: Hong Ming
  • Innovation Scientists and Technicians Troop Construction Projects of Henan Province (Award CXTD2016043)
    • Principle Award Recipient: Guo-Xing Nie
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004209
2020-05-14
2025-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3504.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004209&mimeType=html&fmt=ahah

References

  1. Vreeland RH, Litchfield CD, Martin EL, Elliot E. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 1980; 30:485–495 [View Article]
    [Google Scholar]
  2. Lan L-H, Zhao H, Chen J-C, Chen G-Q. Engineering Halomonas spp. as a low-cost production host for production of bio-surfactant protein PhaP. Biotechnol J 2016; 11:1595–1604 [View Article][PubMed][PubMed]
    [Google Scholar]
  3. Cui Y, Cheng B, Meng Y, Li C, Yin H et al. Expression and functional analysis of two NhaD type antiporters from the halotolerant and alkaliphilic Halomonas sp. Y2. Extremophiles 2016; 20:631–639 [View Article][PubMed][PubMed]
    [Google Scholar]
  4. Arenas M, Bañón PI, Copa-Patiño JL, Sánchez-Porro C, Ventosa A et al. Halomonas ilicicola sp. nov., a moderately halophilic bacterium isolated from a saltern. Int J Syst Evol Microbiol 2009; 59:578–582 [View Article][PubMed][PubMed]
    [Google Scholar]
  5. Ventosa A, Nieto JJ, Oren A. Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 1998; 62:504–544 [View Article][PubMed][PubMed]
    [Google Scholar]
  6. Romanenko LA, Schumann P, Rohde M, Mikhailov VV, Stackebrandt E. Halomonas halocynthiae sp. nov., isolated from the marine ascidian Halocynthia aurantium . Int J Syst Evol Microbiol 2002; 52:1767–1772 [View Article][PubMed][PubMed]
    [Google Scholar]
  7. Guan T-W, Xiao J, Zhao K, Luo X-X, Zhang X-P et al. Halomonas xinjiangensis sp. nov., a halotolerant bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2010; 60:349–352 [View Article][PubMed][PubMed]
    [Google Scholar]
  8. Kaye JZ, Márquez MC, Ventosa A, Baross JA. Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 2004; 54:499–511 [View Article][PubMed][PubMed]
    [Google Scholar]
  9. Yoon J-H, Lee K-C, Kho YH, Kang KH, Kim C-J et al. Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2002; 52:123–130 [View Article][PubMed][PubMed]
    [Google Scholar]
  10. Wu G, Wu X-Q, Wang Y-N, Chi C-Q, Tang Y-Q et al. Halomonas daqingensis sp. nov., a moderately halophilic bacterium isolated from an oilfield soil. Int J Syst Evol Microbiol 2008; 58:2859–2865 [View Article][PubMed][PubMed]
    [Google Scholar]
  11. Berendes F, Gottschalk G, Heine-Dobbernack E, Moore ERB, Tindall BJ. Halomonas desiderata sp. nov, a new alkaliphilic, halotolerant and denitrifying bacterium isolated from a municipal sewage works. Syst Appl Microbiol 1996; 19:158–167 [View Article]
    [Google Scholar]
  12. Boltianskaia IV, Kevbrin VV, Lysenko AM, Kolganova TV, Turova TP et al. [Halomonas mongoliensis sp. nov. and Halomonas kenyensis sp. nov., new haloalkaliphilic denitrifiers capable of reducing N2O, isolated from soda lakes]. Mikrobiologiia 2007; 76:739–747
    [Google Scholar]
  13. Gan L, Long X, Zhang H, Hou Y, Tian J et al. Halomonas saliphila sp. nov., a moderately halophilic bacterium isolated from a saline soil. Int J Syst Evol Microbiol 2018; 68:1153–1159 [View Article][PubMed][PubMed]
    [Google Scholar]
  14. Mata JA, Martínez-Cánovas J, Quesada E, Béjar V. A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 2002; 25:360–375 [View Article][PubMed][PubMed]
    [Google Scholar]
  15. Arahal DR, Vreeland RH, Litchfield CD, Mormile MR, Tindall BJ et al. Recommended minimal standards for describing new taxa of the family Halomonadaceae. Int J Syst Evol Microbiol 2007; 57:2436–2446 [View Article][PubMed][PubMed]
    [Google Scholar]
  16. Tang SK, Jiang Y, Zhi XY, Lou K, WJ L et al. Isolation methods of halophilic actinomycetes. Microbiology 2007; 34:390–392
    [Google Scholar]
  17. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article][PubMed][PubMed]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBio-Cloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed][PubMed]
    [Google Scholar]
  19. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed][PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed][PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed][PubMed]
    [Google Scholar]
  22. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed][PubMed]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed][PubMed]
    [Google Scholar]
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed][PubMed]
    [Google Scholar]
  26. Zhou H-W, Li D-F, Tam NF-Y, Jiang X-T, Zhang H et al. BIPES, a cost-effective high-throughput method for assessing microbial diversity. ISME J 2011; 5:741–749 [View Article][PubMed][PubMed]
    [Google Scholar]
  27. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article][PubMed][PubMed]
    [Google Scholar]
  28. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [View Article][PubMed][PubMed]
    [Google Scholar]
  29. Delcher AL. Glimmer Release Notes Version 3.02. 2006.
  30. Figueras MJ, Beaz-Hidalgo R, Hossain MJ, Liles MR. Taxonomic affiliation of new genomes should be verified using average nucleotide identity and multilocus phylogenetic analysis. Genome Announc 2014; 2:e00927-14 04 12 2014 [View Article][PubMed][PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article][PubMed][PubMed]
    [Google Scholar]
  32. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  33. Christensen H, Angen O, Mutters R, Olsen JE, Bisgaard M. DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 2000; 50 Pt 3:1095–1102 [View Article][PubMed][PubMed]
    [Google Scholar]
  34. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the AD hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  35. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  36. de la Haba RR, Márquez MC, Papke RT, Ventosa A. Multilocus sequence analysis of the family Halomonadaceae . Int J Syst Evol Microbiol 2012; 62:520–538 [View Article][PubMed][PubMed]
    [Google Scholar]
  37. Amouric A, Liebgott P-P, Joseph M, Brochier-Armanet C, Lorquin J. Halomonas olivaria sp. nov., a moderately halophilic bacterium isolated from olive-processing effluents. Int J Syst Evol Microbiol 2014; 64:46–54 [View Article][PubMed][PubMed]
    [Google Scholar]
  38. Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 2012; 28:1033–1034 [View Article][PubMed][PubMed]
    [Google Scholar]
  39. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed][PubMed]
    [Google Scholar]
  40. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article][PubMed][PubMed]
    [Google Scholar]
  41. Tarhriz V, Thiel V, Nematzadeh G, Hejazi MA, Imhoff JF et al. Tabrizicola aquatica gen. nov. sp. nov., a novel alphaproteobacterium isolated from Qurugöl lake nearby Tabriz City, Iran. Antonie Van Leeuwenhoek 2013; 104:1205–1215 [View Article][PubMed][PubMed]
    [Google Scholar]
  42. Gram HC. Über die isolierte Färbung der Schizomyceten in Schnitt-und Trockenpräparaten. Fortschr Med 1884; 2:185–189
    [Google Scholar]
  43. Buck JD, Nonstaining BJD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993 [View Article]
    [Google Scholar]
  44. Leifson E. Atlas of bacterial flagellation. Q Rev Biol 1960; 242:
    [Google Scholar]
  45. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703–704 [View Article][PubMed][PubMed]
    [Google Scholar]
  46. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  47. Nie GX, Ming H, Li S, Zhou EM, Cheng J et al. Amycolatopsis dongchuanensis sp. nov., a novel actinobacterium isolated from dry-hot valley in Yunnan, south-west China. Int J Syst Evol Microbiol 2012; 62:2650–2656
    [Google Scholar]
  48. Poli A, Moriello VS, Esposito E, Lama L, Gambacorta A et al. Exopolysaccharide production by a new Halomonas strain CRSS isolated from saline lake Cape Russell in Antarctica growing on complex and defined media. Biotechnol Lett 2004; 26:1635–1638 [View Article][PubMed][PubMed]
    [Google Scholar]
  49. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article][PubMed][PubMed]
    [Google Scholar]
  50. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for general and molecular microbiology. American Society for Microbiology Washington, DC: American Society for Microbiology; 1994 pp 611–654
    [Google Scholar]
  51. Lee J-C, Kim Y-S, Yun B-S, Whang K-S, sp Hsalicampi. Halomonas salicampi sp. nov., a halotolerant and alkalitolerant bacterium isolated from a saltern soil. Int J Syst Evol Microbiol 2015; 65:4792–4799 [View Article][PubMed][PubMed]
    [Google Scholar]
  52. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  53. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  54. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  55. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  56. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:16
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.004209
Loading
/content/journal/ijsem/10.1099/ijsem.0.004209
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error