1887

Abstract

A Gram-stain-negative, microaerophilic, non-motile, rod-shaped bacterium strain designated PMP191F, was isolated from a human peritoneal tumour. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the organism formed a lineage within the family that was distinct from members of the genus (95.1–95.2 % sequence similarity) and (94.4 % sequence similarity). The average nucleotide identity values between strain PMP191F and T16R-265 and Gsoil 221 was 68.9 and 62.3% respectively. The only respiratory quinone of strain PMP191F was MK-7 and the major fatty acids were iso-C, iso-C G and summed feature 3 (Cω7 and/or Cω6). The polar lipids consisted of phosphatidylethanolamine and some unidentified amino and glycolipids. The G+C content of strain PMP191F calculated from the genome sequence was 43.4 mol%. Based on phylogenetic, phenotypic and chemotaxonomic evidence, strain PMP191F represents a novel species and genus for which the name gen. nov., sp. nov. is proposed. The type strain is PMP191F (=DSM 104999=ATCC BAA-2857 = CCUG 72691). The phylogenetic analyses also revealed that shared over 98 % sequence similarly to members of the genus . However, the average nucleotide identity value between T16R-265, the type species of the genus and Gsoil 221 was 86.8 %. Therefore, we also propose that be reclassified as comb. nov.

Funding
This study was supported by the:
  • National Organization for Rare Disorders (Award 17005)
    • Principle Award Recipient: Traci Testerman
  • National Institutes of Health (Award P20GM103641)
    • Principle Award Recipient: Traci Testerman
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004204
2020-06-05
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/6/3639.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004204&mimeType=html&fmt=ahah

References

  1. Kämpfer P, Lodders N, Falsen E. Hydrotalea flava gen. nov., sp. nov., a new member of the phylum Bacteroidetes and allocation of the genera Chitinophaga, Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Hydrotalea to the family Chitinophagaceae fam. nov. Int J Syst Evol Microbiol 2011; 61:518–523 [View Article][PubMed]
    [Google Scholar]
  2. Rosenberg E. The Family Chitinophagaceae . In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes Springer: Berlin, Heidelberg; 2014 pp 493–495
    [Google Scholar]
  3. Kim S-J, Cho H, Ahn J-H, Weon H-Y, Seok S-J et al. Pseudoflavitalea rhizosphaerae gen. nov., sp. nov., isolated from rhizosphere of tomato, and proposal to reclassify Flavitalea soli as Pseudoflavitalea soli comb. nov. Int J Syst Evol Microbiol 2016; 66:4167–4171 [View Article]
    [Google Scholar]
  4. O'Connell JT, Tomlinson JS, Roberts AA, McGonigle KF, Barsky SH. Pseudomyxoma peritonei is a disease of MUC2-expressing goblet cells. Am J Pathol 2002; 161:551–564 [View Article][PubMed]
    [Google Scholar]
  5. Gilbreath JJ, Semino-Mora C, Friedline CJ, Liu H, Bodi KL et al. A core microbiome associated with the peritoneal tumors of pseudomyxoma peritonei. Orphanet J Rare Dis 2013; 8:105 [View Article][PubMed]
    [Google Scholar]
  6. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  7. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  8. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 1874; 2016:1870
    [Google Scholar]
  9. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  10. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  11. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  12. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  13. Zhang X, Song S, Tang L, Wang Y, Zhang X et al. Gynurincola endophyticus gen. nov., sp. nov., a novel bacterium of the family Chitinophagaceae . Int J Syst Evol Microbiol 2019; 69:816–820 [View Article][PubMed]
    [Google Scholar]
  14. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article][PubMed]
    [Google Scholar]
  15. Siddiqi MZ, Im W-T. Pseudobacter ginsenosidimutans gen. nov., sp. nov., isolated from ginseng cultivating soil. Int J Syst Evol Microbiol 2016; 66:3449–3455 [View Article][PubMed]
    [Google Scholar]
  16. Lo AS, Merrell DS, Lei H, Sardi A, McAvoy T et al. A Novel Member of Chitinophagaceae Isolated from a Human Peritoneal Tumor. Genome Announc 2015; 3:e01297-15 [View Article][PubMed]
    [Google Scholar]
  17. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. International Journal of Systematic Bacteriollogy
    [Google Scholar]
  18. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75–15 [View Article]
    [Google Scholar]
  19. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  20. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Mag 2014; 9:111–118 [View Article]
    [Google Scholar]
  21. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article][PubMed]
    [Google Scholar]
  22. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Peerj Prepr 2016; 4:e1900v1
    [Google Scholar]
  23. Nicholson AC, Gulvik CA, Whitney H et al. Division of the genus Chryseobacterium: Observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens; 20201–19
  24. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington: ASM Press; 2007 pp 330–393
    [Google Scholar]
  25. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note #101. http://www.midi inc.com/pages/mis_literature . 2001
    [Google Scholar]
  26. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  27. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  28. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea . Int J Syst Evol Microbiol 2014; 64:316–324 [View Article][PubMed]
    [Google Scholar]
  29. Whitman WB. The need for change: embracing the genome. Method Microbiol 2014; 41:1–12
    [Google Scholar]
  30. Whitman WB. Genome sequences as the type material for taxonomic descriptions of prokaryotes. Syst Appl Microbiol 2015; 38:217–222 [View Article][PubMed]
    [Google Scholar]
  31. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  32. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  34. Amaral GRS, Dias GM, Wellington-Oguri M, Chimetto L, Campeão ME et al. Genotype to phenotype: identification of diagnostic Vibrio phenotypes using whole genome sequences. Int J Syst Evol Microbiol 2014; 64:357–365 [View Article][PubMed]
    [Google Scholar]
  35. Barona-Gómez F, Cruz-Morales P, Noda-García L. What can genome-scale metabolic network reconstructions do for prokaryotic systematics?. Antonie van Leeuwenhoek 2012; 101:35–43 [View Article][PubMed]
    [Google Scholar]
  36. Patel NB, Sankaranarayanan K, Busse H-J, Lawson PA. Investigating genomic tools for polar lipid prediction. Bergey’s International Society for Microbial Systematics . Abstracts Book 2016p. 41
    [Google Scholar]
  37. Lawson PA, Sankaranarayanan K, Patel NB, Busse H-J. In-silico chemotaxonomy: a tool for 21st century microbial systematics. Bergey’s International Society for Microbial Systematics . Abstracts Book 201627
    [Google Scholar]
  38. Martínez-Morales F, Schobert M, López-Lara IM, Geiger O. Pathways for phosphatidylcholine biosynthesis in bacteria. Microbiol 2003; 149:3461–3471 [View Article]
    [Google Scholar]
  39. Sohlenkamp C, Geiger O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 2016; 40:133–159 [View Article][PubMed]
    [Google Scholar]
  40. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  41. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46:234–239 [View Article][PubMed]
    [Google Scholar]
  42. Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science 2012; 336:1255–1262 [View Article][PubMed]
    [Google Scholar]
  43. Jansson JK, Hofmockel KS. The soil microbiome-from metagenomics to metaphenomics. Curr Opin Microbiol 2018; 43:162–168 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004204
Loading
/content/journal/ijsem/10.1099/ijsem.0.004204
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error