1887

Abstract

This study describes a novel fungal species belonging to the genus . During a previous work focusing on metalaxyl degradation by strains, two isolates from vineyard soil samples collected in the Alentejo region, south Portugal, were identified as a putative novel species based on combined molecular and MALDI-TOF MS data. This new species is described here using a polyphasic approach that combines morphology, internal transcribed spacer of ribosomal DNA (ITS) and 28S ribosomal DNA (LSU) sequence data analysis and proteomic profiling by MALDI-TOF MS. Phenotypic and molecular data enabled this novel species to be clearly distinguished from other species with results of combined ITS+LSU analysis showing that the species is related to and . Therefore, from the results of morphological and molecular analyses, isolates MUM 10.262 and MUM 10.263 seem to represent a new species and the name sp. nov. is proposed, with the ex-type strain MUM 10.262 (=CCMI 1100=CBS 128763).

Funding
This study was supported by the:
  • Not Applicable , European Regional Development Fund , (Award MEDUSA (ALT20-03-0145-FEDER-000015))
  • Not Applicable , European Regional Development Fund , (Award BioTecNorte operation (NORTE-01-0145-FEDER-000004))
  • Not Applicable , Fundação para a Ciência e a Tecnologia , (Award UID/Multi/04449/2019)
  • Not Applicable , Fundação para a Ciência e a Tecnologia , (Award UIDB/04469/2020)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004201
2020-05-07
2020-06-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3475.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004201&mimeType=html&fmt=ahah

References

  1. Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M et al. High-Level classification of the fungi and a tool for evolutionary ecological analyses. Fungal Divers 2018; 90:135–159 [CrossRef]
    [Google Scholar]
  2. Dong Y, Sun Q, Zhang Y, Wang X, Liu P et al. Complete genome of Gongronella sp. w5 provides insight into its relationship with plant. J Biotechnol 2018; 286:1–4 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  3. Nout MJR, Aidoo KE. Asian fungal fermented food. In Hofrichter M. editor Industrial Applications. The Mycota 10, 2nd ed. Berlin: Springer; 2010 pp 30–58
    [Google Scholar]
  4. Hermet A, Méheust D, Mounier J, Barbier G, Jany J-L. Molecular systematics in the genus Mucor with special regards to species encountered in cheese. Fungal Biol 2012; 116:692–705 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  5. Pitt JI, Hocking AD. Fungi and Food Spoilage, 3rd ed. New York: Springer; 2009 p 520
    [Google Scholar]
  6. Alves MH, Campos-Takaki GM, Porto ALF, Milanez AI. Screening of Mucor spp. for the production of amylase, lipase, polygalacturonase and protease. Braz J Microbiol 2002; 33:325–330 [CrossRef]
    [Google Scholar]
  7. Zazueta-Sandoval R, Durón-Castellanos A, Silva-Jiménez H. Peroxidases in YR-1 strain of Mucor circinelloides a potential bioremediator of petroleum-contaminated soils. Ann Microbiol 2008; 58:421426 [CrossRef]
    [Google Scholar]
  8. Jabasingh SA, Pavithra G. Response surface approach for the biosorption of Cr6+ ions by Mucor racemosus . Clean Soil Air Water 2010; 38:492–499 [CrossRef]
    [Google Scholar]
  9. Khuna S, Suwannarach N, Kumla J, Meerak J, Nuangmek W et al. Apophysomyces thailandensis (Mucorales, Mucoromycota), a new species isolated from soil in northern Thailand and its solubilization of non-soluble minerals. MycoKeys 2019; 45:75–92 [CrossRef]
    [Google Scholar]
  10. Robinson RK, Batt CA. Encyclopedia of Food Microbiology, 2nd ed. USA: Academic Press; 2014 pp 63–67
    [Google Scholar]
  11. Lima DX, Cordeiro TRL, de Souza CAF, de Azevedo Santiago ALCM, Souza-Motta CM et al. Diversity of basal fungal order Mucorales (Mucoromycota) in a remaining area of the Brazilian Atlantic rainforest. Nova Hedw. 2018; 107:459–471 [CrossRef]
    [Google Scholar]
  12. Zaror L, Godoy-Martínez P, Álvarez E. Mucormycosis. In Paterson RRM, Lima N. (editors) Molecular biology of food and water borne mycotoxigenic and mycotic fungi FL, USA: CRC Press; 2016 pp 387–400
    [Google Scholar]
  13. Domsch KH, Gams W, Anderson TH. Compendium of soil fungi, 2nd ed. London: Academic Press; 2007 p 672
    [Google Scholar]
  14. Adamčík S, Cai L, Chakraborty D, Chen X-H, Cotter HVT et al. Fungal biodiversity profiles 1–10. Cryptogamie, Mycologie 2015; 36:121–166 [CrossRef]
    [Google Scholar]
  15. Ariyawansa HA, Hyde KD, Jayasiri SC, Buyck B, Chethana KWT et al. Fungal diversity notes 111–252—taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 2015; 75:27–274 [CrossRef]
    [Google Scholar]
  16. Li GJ, Hyde KD, Zhao RL, Hongsanan S, Abdel-Aziz FA et al. Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 2016; 78:1–237 [CrossRef]
    [Google Scholar]
  17. Tibpromma S, Hyde KD, Jeewon R, Maharachchikumbura SSN, Liu J-K et al. Fungal diversity notes 491–602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 2017; 83:1–261 [CrossRef]
    [Google Scholar]
  18. Zhang Z, Han Y, Chen W, Liang Z. Gongronella sichuanensis (Cunninghamellaceae, Mucorales), a new species isolated from soil in China. Phytotaxa 2019; 416:167–174
    [Google Scholar]
  19. Dong C, Zhang Z, Chen W, Han Y, Huang J et al. Gongronella zunyiensis sp. nov. (Cunninghamellaceae, Mucorales) isolated from rhizosphere soil in China. Phytotaxa 2019; 425:290–296
    [Google Scholar]
  20. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL et al. Nuclear ribosomal internal transcribed spacer (its) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A 2012; 109:6241–6246 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  21. Walther G, Pawłowska J, Alastruey-Izquierdo A, Wrzosek M, Rodriguez-Tudela JL et al. DNA barcoding in Mucorales: an inventory of biodiversity. Persoonia 2013; 30:11–47 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  22. Vu D, Groenewald M, de Vries M, Gehrmann T, Stielow B et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud Mycol 2019; 92:135–154 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  23. Martins MR, Pereira P, Lima N, Cruz-Morais J. Degradation of metalaxyl and folpet by filamentous fungi isolated from Portuguese (Alentejo) vineyard soils. Arch Environ Contam Toxicol 2013; 65:67–77 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  24. Martins MR, Santos C, Pereira P, Cruz-Morais J, Lima N. Metalaxyl degradation by mucorales strains Gongronella sp. and Rhizopus oryzae . Molecules 2017; 22:2225 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  25. Simões MF, Santos C, Lima N. Structural diversity of Aspergillus (section Nigri) spores. Microsc Microanal 2013; 19:1151–1158 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  26. Kornerup A, Wanscher JH, Pavey D. Methuen Handbook of Colour New York: Hastings House; 1984
    [Google Scholar]
  27. Ouhibi S, Santos C, Ghali R, Soares C, Hedhili A et al. Penicillium tunisiense sp. nov., a novel species of Penicillium section Ramosa discovered from Tunisian orchard apples. Int J Syst Evol Microbiol 2018; 68:3217–3225 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  28. Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 1990; 172:4238–4246 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  29. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  30. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  31. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  32. Villesen P. FaBox: an online toolbox for fasta sequences. Mol Ecol Notes 2007; 7:965–968 [CrossRef]
    [Google Scholar]
  33. Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol 1992; 9:678–687 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  34. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  35. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  36. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 2012; 61:539–542 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  37. Nylander JAA. MrModeltest 2.4. Program Distributed by the Author Evolutionary Biology Centre, Uppsala University; 2004
    [Google Scholar]
  38. Schwarz P, Bretagne S, Gantier J-C, Garcia-Hermoso D, Lortholary O et al. Molecular identification of Zygomycetes from culture and experimentally infected tissues. J Clin Microbiol 2006; 44:340–349 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  39. Dannaoui E. Molecular tools for identification of Zygomycetes and the diagnosis of zygomycosis. Clin Microbiol Infect 2009; 15:66–70 [CrossRef]
    [Google Scholar]
  40. Vitale RG, de Hoog GS, Schwarz P, Dannaoui E, Deng S et al. Antifungal susceptibility and phylogeny of opportunistic members of the order Mucorales . J Clin Microbiol 2012; 50:66–75 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  41. Porras-Alfaro A, Liu K-L, Kuske CR, Xie G. From genus to phylum: large-subunit and internal transcribed spacer rRNA operon regions show similar classification accuracies influenced by database composition. Appl Environ Microbiol 2014; 80:829–840 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  42. Raja HA, Miller AN, Pearce CJ, Oberlies NH. Fungal identification using molecular tools: a primer for the natural products research community. J Nat Prod 2017; 80:756–770 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  43. Halwachs B, Madhusudhan N, Krause R, Nilsson RH, Moissl-Eichinger C et al. Critical issues in mycobiota analysis. Front Microbiol 2017; 8:180 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  44. Liu K-L, Porras-Alfaro A, Kuske CR, Eichorst SA, Xie G. Accurate, rapid taxonomic classification of fungal large-subunit rRNA genes. Appl Environ Microbiol 2012; 78:1523–1533 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  45. Walther G, Wagner L, Kurzai O. Updates on the taxonomy of Mucorales with an emphasis on clinically important taxa. J Fungi 2019; 5:106 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  46. Schwarz P, Guedouar H, Laouiti F, Grenouillet F, Dannaoui E. Identification of Mucorales by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J Fungi 2019; 5:56 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  47. Hoffmann K, Pawłowska J, Walther G, Wrzosek M, de Hoog GS et al. The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies. Persoonia 2013; 30:57–76 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  48. Hesseltine CW, Ellis JJ. The genus Absidia: Gongronella and cylindrical-spored species of Absidia . Mycologia 1964; 56:568–601 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004201
Loading
/content/journal/ijsem/10.1099/ijsem.0.004201
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error