1887

Abstract

This study was conducted to clarify the taxonomic status of the species and . Whole genome sequences for the type strains of and were compared against the closely related type strains of the group and the group species. Average nucleotide identity and digital DNA–DNA hybridization values between LMG 2158 and ATCC 23835 were 98.4 and 85.5 %, and between VM14 and RYU5 were 99.3 and 95.3 %. These values were greater than recognized thresholds for bacterial species delineation, indicating that they belong to the same genomospecies, respectively. Therefore, and should be reclassified as later heterotypic synonyms of and , respectively.

Funding
This study was supported by the:
  • Teruo Kirikae , JU Research Fund (Keiko Yamazaki)
  • Teruo Kirikae , Japan Agency for Medical Research and Development , (Award 19fk0108061h0302)
  • Teruo Kirikae , Japan Society for the Promotion of Science , (Award 19KK0203)
  • Mari Tohya , Japan Society for the Promotion of Science , (Award 19K16652)
  • Teruo Kirikae , Japan Society for the Promotion of Science , (Award 18K07121)
  • Tatsuya Tada , Japan Society for the Promotion of Science , (Award 18K07120)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004199
2020-05-11
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3547.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004199&mimeType=html&fmt=ahah

References

  1. Palleroni NJ. Pseudomonas. In Brenner DJ, Krieg NR, Staley JT. (editors) Bergey’s Manual of Systematic Bacteriology 2, 2nd ed. New York: Springer; 2005 pp 323–379
    [Google Scholar]
  2. Tarhriz V, Nouioui I, Spröer C, Verbarg S, Ebrahimi V et al. Pseudomonas khazarica sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from Khazar Sea sediments. Antonie van Leeuwenhoek 2020; 113:521-532 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  3. Wang X, SW H, Guo HB, Tin KK, Gao JS et al. Pseudomonas rhizoryzae sp. nov., isolated from rice. Int J Syst Evol Microbiol 2019
    [Google Scholar]
  4. Hofmann K, Huptas C, Doll EV, Scherer S, Wenning M. Pseudomonas saxonica sp. nov., isolated from raw milk and skimmed milk concentrate.. Int J Syst Evol Microbiol 2019
    [Google Scholar]
  5. Wang J-W, Cai M, Nie Y, Hu B, Yang Y et al. Pseudomonas jilinensis sp. nov., isolated from oil production water of Jilin oilfield in China. Curr Microbiol 2020; 77:688-694 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  6. Li J, Wang LH, Xiang FG, Ding WL, LJ X et al. Pseudomonas phragmitis sp. nov., isolated from petroleum polluted river sediment. Int J Syst Evol Microbiol 2019
    [Google Scholar]
  7. Lick S, Kröckel L, Wibberg D, Winkler A, Blom J et al. Pseudomonas bubulae sp. nov., isolated from beef. Int J Syst Evol Microbiol 2019
    [Google Scholar]
  8. Nováková D, vec P, Zeman M, Busse HJ, Mašlaňová I et al. Pseudomonas leptonychotis sp. nov., isolated from Weddell seals in Antarctica. Int J Syst Evol Microbiol 2019
    [Google Scholar]
  9. Oh WT, Jun JW, Giri SS, Yun S, Kim HJ et al. Pseudomonas tructae sp. nov., novel species isolated from rainbow trout kidney. Int J Syst Evol Microbiol 2019; 69:3851–3856 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  10. Anurat P, Duangmal K, Srisuk N. Pseudomonas mangiferae sp. nov., isolated from bark of mango tree in Thailand. Int J Syst Evol Microbiol 2019; 69:3537–3543 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  11. Bueno-Gonzalez V, Brady C, Denman S, Plummer S, Allainguillaume J et al. Pseudomonas daroniae sp. nov. and Pseudomonas dryadis sp. nov., isolated from pedunculate oak affected by acute oak decline in the UK. Int J Syst Evol Microbiol 2019; 69:3368–3376 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  12. Mulet M, Gomila M, Ramírez A, Lalucat J, Garcia-Valdes E. Pseudomonas nosocomialis sp. nov., isolated from clinical specimens. Int J Syst Evol Microbiol 2019; 69:3392–3398 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  13. Tohya M, Watanabe S, Teramoto K, Shimojima M, Tada T et al. Pseudomonas juntendi sp. nov., isolated from patients in Japan and Myanmar. Int J Syst Evol Microbiol 2019; 69:3377–3384 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  14. Ramírez-Bahena MH, Salazar S, Santín PJ, Sánchez-Rodríguez JA, Fernández-Pascual M et al. Pseudomonas edaphica sp. nov., isolated from rhizospheric soil of Cistus ladanifer L. in Spain. Int J Syst Evol Microbiol 2019; 69:3141–3147 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  15. Rao Q, Liu Y, Chen C, Lin Q, Ren L et al. Pseudomonas ovata sp. nov., isolated from the skin of the tail of farmed Murray cod (Maccullochella peelii peelii) with a profound ulceration. Curr Microbiol 2019; 76:1168–1174 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  16. Xiang W, Chen S, Tian D, Huang C, Gao T. Pseudomonas hutmensis sp. nov., a new fluorescent member of Pseudomonas putida group. Curr Microbiol 2019; 76:872–878 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  17. Keshavarz-Tohid V, Vacheron J, Dubost A, Prigent-Combaret C, Taheri P et al. Genomic, phylogenetic and catabolic re-assessment of the Pseudomonas putida clade supports the delineation of Pseudomonas alloputida sp. nov., Pseudomonas inefficax sp. nov., Pseudomonas persica sp. nov., and Pseudomonas shirazica sp. nov. Syst Appl Microbiol 2019; 42:468–480 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  18. Zou Y, He S, Sun Y, Zhang X, Liu Y et al. Pseudomonas urumqiensis sp. nov., isolated from rhizosphere soil of Alhagi sparsifolia . Int J Syst Evol Microbiol 2019; 69:1760–1766 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  19. Oueslati M, Mulet M, Gomila M, Berge O, Hajlaoui MR et al. New species of pathogenic Pseudomonas isolated from citrus in Tunisia: Proposal of Pseudomonas kairouanensis sp. nov. and Pseudomonas nabeulensis sp. nov. Syst Appl Microbiol 2019; 42:348–359 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  20. Tohya M, Watanabe S, Teramoto K, Uechi K, Tada T et al. Pseudomonas asiatica sp. nov., isolated from hospitalized patients in Japan and Myanmar. Int J Syst Evol Microbiol 2019; 69:1361–1368 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  21. Wang M-Q, Wang Z, Yu L-N, Zhang C-S, Bi J et al. Pseudomonas qingdaonensis sp. nov., an aflatoxin-degrading bacterium, isolated from peanut rhizospheric soil. Arch Microbiol 2019; 201:673–678 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  22. Zaki SS, Alejandro JG, Raúl R, Paula GF. Pseudomonas bohemica sp. nov., a novel bacterium with a great genomic potential of produce novel drugs. FarmaJornal 2019; 4:267
    [Google Scholar]
  23. Ye Y, Chen C, Ren Y, Wang R, Zhang C et al. Pseudomonas mangrovi sp. nov., isolated from mangrove soil. Int J Syst Evol Microbiol 2019; 69:377–383 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  24. Qin J, Feng Y, Lu X, Zong Z. Pseudomonas huaxiensis sp. nov., isolated from hospital sewage. Int J Syst Evol Microbiol 2019; 69:3281–3286 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  25. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 2005; 102:2567–2572 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  27. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  28. Peix A, Ramírez-Bahena M-H, Velázquez E. The current status on the taxonomy of Pseudomonas revisited: an update. Infect Genet Evol 2018; 57:106–116 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  29. Ark PA, Tompkins CM. Bacterial leaf bright of bird’s nest fern. Phytopathology 1946; 36:758–761
    [Google Scholar]
  30. Tanii A, Miyajima K, Akita T. The sheath brown rot disease of rice and its causal bacterium Pseudomonas fuscovaginae sp. nov. Ann Phytopathol Soc Jpn 1976; 42:540–548
    [Google Scholar]
  31. Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q et al. Genome-based evolutionary history of Pseudomonas spp. Environ Microbiol 2018; 20:2142–2159 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  32. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  33. Tvrzová L, Schumann P, Spröer C, Sedlácek I, Pácová Z et al. Pseudomonas moraviensis sp. nov. and Pseudomonas vranovensis sp. nov., soil bacteria isolated on nitroaromatic compounds, and emended description of Pseudomonas asplenii . Int J Syst Evol Microbiol 2006; 56:2657–2663 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  34. Wang L-T, Tai C-J, Wu Y-C, Chen Y-B, Lee F-L et al. Pseudomonas taiwanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2010; 60:2094–2098 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  35. Kiprianova EA, Klochko VV, Zelena LB, Churkina LN, Avdeeva LV. Pseudomonas batumici sp. nov., the antibiotic-producing bacteria isolated from soil of the Caucasus Black Sea coast. Mikrobiol Z 2011; 73:3–8[PubMed][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004199
Loading
/content/journal/ijsem/10.1099/ijsem.0.004199
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error