1887

Abstract

A total of 34 sp. strains were isolated from caseous lymph node abscesses of wild boar and roe deer in different regions of Germany. They showed slow growth on Columbia sheep blood agar and sparse growth on Hoyle’s tellurite agar. Cellular fatty acid analysis allocated them in the group of genus . MALDI-TOF MS using specific database extensions and sequencing resulted in classification as . Their quinone system is similar to , with major menaquinone MK-8(H2). Their complex polar lipid profile includes major lipids phosphatidylinositol, phosphatidylinositol-mannoside, diphosphatidylglycerol, but also unidentified glycolipids, distinguishing them clearly from . They ferment glucose, ribose and maltose (like ), but do not utilise -xylose, mannitol, lactose, sucrose and glycogen (like ). They showed activity of catalase, urease and phospholipase D, but variable results for alkaline phosphatase and alpha-glucosidase. All were non-toxigenic, gene bearing and susceptible to clindamycin, penicillin and erythromycin. In 16SrRNA gene and RpoB protein phylogenies the strains formed distinct brancheswith as nearest relative.Whole genome sequencing revealed the unique sequence type 578, a distinctbranch in pangenomic core genome MLST, average nucleotide identities <91%, enhancedgenome sizes (2.55 Mbp) and G/C content (54.4 mol%) compared to related species.These results suggest that the strains represent a novel species, for which wepropose the name sp. nov., based on their first isolation from forest-dwellinggame animals. The type strain isKL0182 (= CVUAS 4292 = DSM 109166 = LMG 31313= CIP 111 672).

Funding
This study was supported by the:
  • Bundesministerium für Gesundheit (Award National Reference Laboratories Network (09-49, FKZ 1369-359415))
    • Principle Award Recipient: Andreas Sing
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004195
2020-05-05
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/6/3614.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004195&mimeType=html&fmt=ahah

References

  1. Bernard K. The genus Corynebacterium and other medically relevant coryneform-like bacteria. J Clin Microbiol 2012; 50:3152–3158 [View Article][PubMed]
    [Google Scholar]
  2. von Graevenitz A, Bernard K. The genus Corynebacterium - medical. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. (editors) The Prokaryotes: Volume 3: Archaea Bacteria: Firmicutes, Actinomycetes New York, NY: Springer New York; 2006 pp 819–842
    [Google Scholar]
  3. Konrad R, Berger A, Huber I, Boschert V, Hörmansdorfer S et al. Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry as a tool for rapid diagnosis of potentially toxigenic Corynebacterium species in the laboratory management of diphtheria-associated bacteria. Euro Surveill 2010; 15:19699 [View Article][PubMed]
    [Google Scholar]
  4. Oberreuter H, Seiler H, Scherer S. Identification of coryneform bacteria and related taxa by Fourier-transform infrared (FT-IR) spectroscopy. Int J Syst Evol Microbiol 2002; 52:91–100 [View Article][PubMed]
    [Google Scholar]
  5. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 1998; 95:3140–3145 [View Article][PubMed]
    [Google Scholar]
  6. Rajamani Sekar SK, Veeraraghavan B, Anandan S, Devanga Ragupathi NK, Sangal L et al. Strengthening the laboratory diagnosis of pathogenic Corynebacterium species in the Vaccine era. Lett Appl Microbiol 2017; 65:354–365 [View Article][PubMed]
    [Google Scholar]
  7. Bolt F, Cassiday P, Tondella ML, Dezoysa A, Efstratiou A et al. Multilocus sequence typing identifies evidence for recombination and two distinct lineages of Corynebacterium diphtheriae . J Clin Microbiol 2010; 48:4177–4185 [View Article][PubMed]
    [Google Scholar]
  8. König C, Meinel DM, Margos G, Konrad R, Sing A. Multilocus sequence typing of Corynebacterium ulcerans provides evidence for zoonotic transmission and for increased prevalence of certain sequence types among toxigenic strains. J Clin Microbiol 2014; 52:4318–4324 [View Article][PubMed]
    [Google Scholar]
  9. Margos G, Vollmer SA, Cornet M, Garnier M, Fingerle V et al. A new Borrelia species defined by multilocus sequence analysis of housekeeping genes. Appl Environ Microbiol 2009; 75:5410–5416 [View Article][PubMed]
    [Google Scholar]
  10. Berger A, Dangel A, Schober T, Schmidbauer B, Konrad R et al. Whole genome sequencing suggests transmission of Corynebacterium diphtheriae-caused cutaneous diphtheria in two siblings, Germany, 2018. Euro Surveill 2019; 24: [View Article]
    [Google Scholar]
  11. Dangel A, Berger A, Konrad R, Bischoff H, Sing A. Geographically Diverse Clusters of Nontoxigenic Corynebacterium diphtheriae Infection, Germany, 2016-2017. Emerg Infect Dis 2018; 24:1239–1245 [View Article][PubMed]
    [Google Scholar]
  12. Alikhan N-F, Zhou Z, Sergeant MJ, Achtman M. A genomic overview of the population structure of Salmonella . PLoS Genet 2018; 14:e1007261 [View Article][PubMed]
    [Google Scholar]
  13. Merker M, Kohl TA, Niemann S, Supply P. The Evolution of strain typing in the Mycobacterium tuberculosis complex. Adv Exp Med Biol 2017; 1019:43–78 [View Article][PubMed]
    [Google Scholar]
  14. Contzen M, Sting R, Blazey B, Rau J. Corynebacterium ulcerans from diseased wild boars. Zoonoses Public Health 2011; 58:479–488 [View Article][PubMed]
    [Google Scholar]
  15. Eisenberg T, Kutzer P, Peters M, Sing A, Contzen M et al. Nontoxigenic tox-bearing Corynebacterium ulcerans infection among game animals, Germany. Emerg Infect Dis 2014; 20:448–452 [View Article][PubMed]
    [Google Scholar]
  16. Rau J, Blazey B, Contzen M, Sting R. Corynebacterium ulcerans infection in roe deer (Capreolus capreolus). Berl Munch Tierarztl Wochenschr 2012; 125:159–162[PubMed]
    [Google Scholar]
  17. Schuhegger R, Lindermayer M, Kugler R, Heesemann J, Busch U et al. Detection of toxigenic Corynebacterium diphtheriae and Corynebacterium ulcerans strains by a novel real-time PCR. J Clin Microbiol 2008; 46:2822–2823 [View Article][PubMed]
    [Google Scholar]
  18. Rau J, Eisenberg T, Peters M, Berger A, Kutzer P et al. Reliable differentiation of a non-toxigenic tox gene-bearing Corynebacterium ulcerans variant frequently isolated from game animals using MALDI-TOF MS. Vet Microbiol 2019; 237:108399 [View Article][PubMed]
    [Google Scholar]
  19. Berger A, Dangel A, Peters M, Mühldorfer K, Braune S et al. Tox-positive Corynebacterium in ulcerans in hedgehogs, Germany. Emerg Microbes Infect 2019; 8:211–217 [View Article][PubMed]
    [Google Scholar]
  20. Dangel A, Berger A, Konrad R, Sing A. NGS-based phylogeny of diphtheria-related pathogenicity factors in different Corynebacterium spp. implies species-specific virulence transmission. BMC Microbiol 2019; 19:28 [View Article][PubMed]
    [Google Scholar]
  21. Meinel DM, Kuehl R, Zbinden R, Boskova V, Garzoni C et al. Outbreak investigation for toxigenic Corynebacterium diphtheriae wound infections in refugees from Northeast Africa and Syria in Switzerland and Germany by whole genome sequencing. Clin Microbiol Infect 2016; 22:1003.e1–101003 [View Article][PubMed]
    [Google Scholar]
  22. Meinel DM, Margos G, Konrad R, Krebs S, Blum H et al. Next generation sequencing analysis of nine Corynebacterium ulcerans isolates reveals zoonotic transmission and a novel putative diphtheria toxin-encoding pathogenicity island. Genome Med 2014; 6:113 [View Article][PubMed]
    [Google Scholar]
  23. Sting R, Ketterer-Pintur S, Contzen M, Mauder N, Süss-Dombrowski C. Toxigenic Corynebacterium ulcerans isolated from a free-roaming red fox (Vulpes vulpes). Berl Munch Tierarztl Wochenschr 2015; 128:204–208[PubMed]
    [Google Scholar]
  24. Podbielski A, Berger A, Dommerich S, Donat M, Frickmann H et al. MIQ 13b: Infektionen des Mundes und der oberen Atemwege, Teil II. Qualitätsstandards in der mikrobiologisch-infektiologischen Diagnostik - Im Auftrag der Deutschen Gesellschaft für Hygiene und Mikrobiologie (DGHM). Urban and Fischer in Elsevier 2010; ISBN: 978-3-437-41596-8:
    [Google Scholar]
  25. Gerhardt P, Murray RGE, Krieg NR, Wood WA. American Society Microbiol - Methods for General and Molecular Bacteriology 1994
    [Google Scholar]
  26. Riegel P, Ruimy R, de Briel D, Prévost G, Jehl F et al. Taxonomy of Corynebacterium diphtheriae and related taxa, with recognition of Corynebacterium ulcerans sp. nov. nom. rev. FEMS Microbiol Lett 1995; 126:271–276 [View Article][PubMed]
    [Google Scholar]
  27. EUCAST European committee on antimicrobial susceptibility testing - Clinical breakpoints for bacteria v8.1. Available from:. http://www.eucast.org/clinical_breakpoints/
  28. CLSI Performance standards for antimicrobial susceptibility testing. M100, 28th ed. 2018
    [Google Scholar]
  29. CLSI Methods for Antimicrobial Dilution and Disk Susceptibility Testing of infrequently isolated or fastidious bacteria. M45, 3rd ed. 2015
    [Google Scholar]
  30. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  31. Kämpfer P, Jerzak L, Bochenski M, Kasprzak M, Wilharm G et al. Corynebacterium pelargi sp. nov., isolated from the trachea of white stork nestlings. Int J Syst Evol Microbiol 2015; 65:1415–1420 [View Article][PubMed]
    [Google Scholar]
  32. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  33. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  34. Altenburgera P, Kämpferb P, Makristathisc A, Lubitza W, Bussea H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52 [View Article]
    [Google Scholar]
  35. Stolz A, Busse H-J, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57:572–576 [View Article][PubMed]
    [Google Scholar]
  36. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  37. Frischmann A, Knoll A, Hilbert F, Zasada AA, Kämpfer P et al. Corynebacterium epidermidicanis sp. nov., isolated from skin of a dog. Int J Syst Evol Microbiol 2012; 62:2194–2200 [View Article][PubMed]
    [Google Scholar]
  38. Baumgardt S, Loncaric I, Kämpfer P, Busse H-J. Corynebacterium tapiri sp. nov. and Corynebacterium nasicanis sp. nov., isolated from a tapir and a dog, respectively. Int J Syst Evol Microbiol 2015; 65:3885–3893 [View Article][PubMed]
    [Google Scholar]
  39. Busse H-J, Kleinhagauer T, Glaeser SP, Spergser J, Kämpfer P et al. Classification of three corynebacterial strains isolated from the Northern Bald Ibis (Geronticus eremita): proposal of Corynebacterium choanae sp. nov., Corynebacterium pseudopelargi sp. nov., and Corynebacterium gerontici sp. nov. Int J Syst Evol Microbiol 2019; 69:2928–2935 [View Article][PubMed]
    [Google Scholar]
  40. Engler KH, Glushkevich T, Mazurova IK, George RC, Efstratiou A. A modified Elek test for detection of toxigenic corynebacteria in the diagnostic laboratory. J Clin Microbiol 1997; 35:495–498 [View Article][PubMed]
    [Google Scholar]
  41. Ward JH. Hierarchical grouping to optimize an objective function. J Am Stat Assoc 1963; 58:236–244 [View Article]
    [Google Scholar]
  42. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  43. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  44. Khamis A, Raoult D, La Scola B. rpoB gene sequencing for identification of Corynebacterium species. J Clin Microbiol 2004; 42:3925–3931 [View Article][PubMed]
    [Google Scholar]
  45. The SILVA rRNA database By the SILVA ribosomal RNA database project. Available from. https://www.arb-silva.de/
  46. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013; 41:D590–D596 [View Article][PubMed]
    [Google Scholar]
  47. Edgar RC. Muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004; 5:113 [View Article][PubMed]
    [Google Scholar]
  48. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article][PubMed]
    [Google Scholar]
  49. Oliveira M, Barroco C, Mottola C, Santos R, Lemsaddek A et al. First report of Corynebacterium pseudotuberculosis from caseous lymphadenitis lesions in Black Alentejano pig (Sus scrofa domesticus). BMC Vet Res 2014; 10:218 [View Article][PubMed]
    [Google Scholar]
  50. Andrews S. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc ; 2010
  51. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 2014; 15:R46 [View Article][PubMed]
    [Google Scholar]
  52. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  53. Antipov D, Korobeynikov A, McLean JS, Pevzner PA. hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics 2016; 32:1009–1015 [View Article][PubMed]
    [Google Scholar]
  54. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  55. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article][PubMed]
    [Google Scholar]
  56. Dazas M, Badell E, Carmi-Leroy A, Criscuolo A, Brisse S. Taxonomic status of Corynebacterium diphtheriae biovar Belfanti and proposal of Corynebacterium belfantii sp. nov. Int J Syst Evol Microbiol 2018; 68:3826–3831 [View Article][PubMed]
    [Google Scholar]
  57. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  58. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article][PubMed]
    [Google Scholar]
  59. Pritchard L. PyANI Copyright The James Hutton Institute 2014-2019. Pyani. Python module for Average Nucleotide Identity analyses; [cited 2018]. https://github.com/widdowquinn/pyani
  60. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  61. Ruppitsch W, Pietzka A, Prior K, Bletz S, Fernandez HL et al. Defining and evaluating a core genome multilocus sequence typing scheme for whole-genome sequence-based typing of Listeria monocytogenes . J Clin Microbiol 2015; 53:2869–2876 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004195
Loading
/content/journal/ijsem/10.1099/ijsem.0.004195
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error