1887

Abstract

The genus was established and designated as a member of the family in 2016. Although the taxonomical classification of most members in this family has been relatively resolved after two reclassifications in 2016 and 2017, the classification of the genus remains ambiguous. In this study, a polyphasic approach was used to provide evidence supporting the fact that the genus should no longer be considered a member of and proposes its reclassification into the family . The phylogenetic tree of type species in the families and based on the sequences of the 16S rRNA gene, housekeeping gene, and the whole-genome comprising the 92 core genes revealed that the genus forms a phylogenetic lineage within the family . The average nucleotide identity (ANI) value of the type species with genus was found to be higher for the family than that for the family . Notably, 12 conserved signature indels (CSIs) that are exclusively shared among the clade members were found in the type strains of the genus . Based on these analyses, this study suggests the reclassification of and into the family .

Funding
This study was supported by the:
  • Ju Huck Lee , National Research Foundation of Korea , (Award NRF-2019M3A9F3065226)
  • Jiyoung Lee , Korea Research Institute of Bioscience and Biotechnology , (Award KGM5282021)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004192
2020-05-05
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3541.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004192&mimeType=html&fmt=ahah

References

  1. Hata H, Natori T, Mizuno T, Kanazawa I, Eldesouky I et al. Phylogenetics of family Enterobacteriaceae and proposal to reclassify Escherichia hermannii and Salmonella subterranea as Atlantibacter hermannii and Atlantibacter subterranea gen. nov., comb. nov. Microbiol Immunol 2016; 60:303–311 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  2. Alnajar S, Gupta RS. Phylogenomics and comparative genomic studies delineate six main clades within the family Enterobacteriaceae and support the reclassification of several polyphyletic members of the family. Infect Genet Evol 2017; 54:108–127 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  3. Adeolu M, Alnajar S, Naushad S, S Gupta R. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:5575–5599 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  4. Palmer M, Steenkamp ET, Coetzee MPA, Avontuur JR, Chan W-Y et al. Mixta gen. nov., a new genus in the Erwiniaceae . Int J Syst Evol Microbiol 2018; 68:1396–1407 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  5. Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter . Syst Appl Microbiol 2013; 36:309–319 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  6. Stephan R, Grim CJ, Gopinath GR, Mammel MK, Sathyamoorthy V et al. Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively. Int J Syst Evol Microbiol 2014; 64:3402–3410 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  7. Lindsey RL, Garcia-Toledo L, Fasulo D, Gladney LM, Strockbine N. Multiplex polymerase chain reaction for identification of Escherichia coli, Escherichia albertii and Escherichia fergusonii . J Microbiol Methods 2017; 140:1–4 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  8. Jackson EE, Sonbol H, Masood N, Forsythe SJ. Genotypic and phenotypic characteristics of Cronobacter species, with particular attention to the newly reclassified species Cronobacter helveticus, Cronobacter pulveris, and Cronobacter zurichensis . Food Microbiol 2014; 44:226–235 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  9. Svobodová B, Vlach J, Junková P, Karamonová L, Blažková M et al. Novel method for reliable identification of Siccibacter and Franconibacter strains: from "Pseudo-Cronobacter" to new Enterobacteriaceae genera. Appl Environ Microbiol 2017; 83:e00234–17 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  10. Gupta RS. Identification of conserved indels that are useful for classification and evolutionary studies; 2014; 41153–182
  11. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  12. Smits THM, Rezzonico F, Duffy B. Evolutionary insights from Erwinia amylovora genomics. J Biotechnol 2011; 155:34–39 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  13. Halpern M, Fridman S, Aizenberg-Gershtein Y, Izhaki I. Transfer of Pseudomonas flectens Johnson 1956 to Phaseolibacter gen. nov., in the family Enterobacteriaceae, as Phaseolibacter flectens gen. nov., comb. nov. Int J Syst Evol Microbiol 2013; 63:268–273 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  14. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  15. Baek I, Lee K, Goodfellow M, Chun J. Comparative genomic and phylogenomic analyses clarify relationships within and between Bacillus cereus and Bacillus thuringiensis: proposal for the recognition of two Bacillus thuringiensis genomovars. Front Microbiol 2019; 10:10 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  16. Kwak M-J, Choi S-B, Kim B-Y, Chun J. Genome-based reclassification of Weissella jogaejeotgali as a later heterotypic synonym of Weissella thailandensis . Int J Syst Evol Microbiol 2019; 69:3672–3675 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  17. Sheu S-Y, Xie Y-R, Chen W-M. Mucilaginibacter limnophilus sp. nov., isolated from a lake. J Microbiol 2019; 57:967–975 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  18. Yu Y, Li X, Zhang J, Chai L-J, Lu Z-M et al. Lactobacillus jinshani sp. nov., isolated from solid-state vinegar culture of Zhenjiang aromatic vinegar. Antonie van Leeuwenhoek 2020; 113:43–54 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  19. Aizenberg-Gershtein Y, Laviad S, Samuni-Blank M, Halpern M. Izhakiella capsodis gen. nov., sp. nov., in the family Enterobacteriaceae, isolated from the mirid bug Capsodes infuscatus . Int J Syst Evol Microbiol 2016; 66:1364–1370 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  20. Ji M, Tang S, Ferrari BC. Izhakiella australiensis sp. nov. isolated from an Australian desert soil. Int J Syst Evol Microbiol 2017; 67:4317–4322 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  21. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef]
    [Google Scholar]
  22. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  24. Kook SY, Lee JS, Chun CO, Kim HJ, Park YH. Isoprenoid Quinone Profiles of the Leclercia adecarboxylata KCTC l036T. J Microbiol Biotechn 1996; 6:68–69
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004192
Loading
/content/journal/ijsem/10.1099/ijsem.0.004192
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error