1887

Abstract

Bacterial strain TWA-58, isolated from irrigation water in Taiwan, was characterized using a polyphasic taxonomy approach. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 92 protein clusters indicated that strain TWA-58 formed a phylogenetic lineage in the genus of the family . Strain TWA-58 was most closely related to NVT with a 96.7 % 16S rRNA gene sequence similarity. Strain TWA-58 showed 75.2 % average nucleotide identity, 70.9 % average amino acid identity and 21.0 % digital DNA–DNA hybridization identity with NVT. Cells were Gram-stain-negative, aerobic, motile, coccoid-shaped and formed transparent colonies. Optimal growth occurred at 25 °C, pH 6, and 0 % NaCl. The major fatty acids of strain TWA-58 were iso-C and anteiso-C. The predominant hydroxy fatty acid was iso-C 3-OH. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and two unidentified aminophospholipids. The major isoprenoid quinone was MK-7. Genomic DNA G+C content of strain TWA-58 was 65.3 mol%. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain TWA-58 should be classified in a novel species of the genus , for which the name sp. nov. is proposed. The type strain is TWA-58 (=BCRC 81161=LMG 31019=KCTC 62872).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004191
2020-05-04
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3440.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004191&mimeType=html&fmt=ahah

References

  1. Rochman FF, Kim J-J, Rijpstra WIC, Sinninghe Damsté JS, Schumann P et al. Oleiharenicola alkalitolerans gen. nov., sp. nov., a new member of the phylum Verrucomicrobia isolated from an oilsands tailings pond. Int J Syst Evol Microbiol 2018; 68:1078–1084 [View Article][PubMed][PubMed]
    [Google Scholar]
  2. Shieh WY, Jean WD. Alterococcus agarolyticus, gen.nov., sp.nov., a halophilic thermophilic bacterium capable of agar degradation. Can J Microbiol 1998; 44:637–645 [View Article][PubMed][PubMed]
    [Google Scholar]
  3. Chin KJ, Liesack W, Janssen PH. Opitutus terrae gen. nov., sp. nov., to accommodate novel strains of the division 'Verrucomicrobia' isolated from rice paddy soil. Int J Syst Evol Microbiol 2001; 51:1965–1968 [View Article][PubMed][PubMed]
    [Google Scholar]
  4. Lin JY, Russell JA, Sanders JG, Wertz JT. Cephaloticoccus gen. nov., a new genus of 'Verrucomicrobia' containing two novel species isolated from Cephalotes ant guts. Int J Syst Evol Microbiol 2016; 66:3034–3040 [View Article][PubMed][PubMed]
    [Google Scholar]
  5. Tegtmeier D, Belitz A, Radek R, Heimerl T, Brune A. Ereboglobus luteus gen. nov. sp. nov. from cockroach guts, and new insights into the oxygen relationship of the genera Opitutus and Didymococcus (Verrucomicrobia: Opitutaceae). Syst Appl Microbiol 2018; 41:101–112 [View Article][PubMed][PubMed]
    [Google Scholar]
  6. Baek K, Song J, Cho J-C, Chung EJ, Choi A. Nibricoccus aquaticus gen. nov., sp. nov., a new genus of the family Opitutaceae isolated from hyporheic freshwater. Int J Syst Evol Microbiol 2019; 69:552–557 [View Article][PubMed][PubMed]
    [Google Scholar]
  7. Wertz JT, Kim E, Breznak JA, Schmidt TM, Rodrigues JLM. Second correction for Wertz et al., "Genomic and physiological characterization of the Verrucomicrobia isolate Geminisphaera colitermitum gen. nov., sp. nov., reveals microaerophily and nitrogen fixation genes". Appl Environ Microbiol 2018; 84:e00952–18 [View Article][PubMed][PubMed]
    [Google Scholar]
  8. Wertz JT, Kim E, Breznak JA, Schmidt TM, Rodrigues JLM. Genomic and physiological characterization of the Verrucomicrobia isolate Geminisphaera colitermitum gen. nov., sp. nov., reveals microaerophily and nitrogen fixation genes. Appl Environ Microbiol 2012; 78:1544–1555 [View Article][PubMed][PubMed]
    [Google Scholar]
  9. Rast P, Glöckner I, Boedeker C, Jeske O, Wiegand S et al. Three novel species with peptidoglycan cell walls form the new genus Lacunisphaera gen. nov. in the Family Opitutaceae of the Verrucomicrobial Subdivision 4. Front Microbiol 2017; 8:202 [View Article][PubMed][PubMed]
    [Google Scholar]
  10. Beveridge TJ, Lawrence JR, Murray RGE et al. Sampling and staining for light microscopy. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp 19–33
    [Google Scholar]
  11. Schlegel HG, Lafferty R, Krauss I. The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch Mikrobiol 1970; 71:283–294 [View Article][PubMed][PubMed]
    [Google Scholar]
  12. Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbüchel A, A sensitive SA. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 1999; 171:73–80 [View Article][PubMed][PubMed]
    [Google Scholar]
  13. Breznak JA, Costilow RN et al. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007. pp 309-–3329
    [Google Scholar]
  14. Tindall BJ, Sikorski J, Smibert RA, Krieg NR et al. Phenotypic characterization and the principles of comparative systematics. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp 330–393
    [Google Scholar]
  15. Wen C-M, Tseng C-S, Cheng C-Y, Li Y-K. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 2002; 35:213–219 [View Article][PubMed][PubMed]
    [Google Scholar]
  16. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50 Pt 5:1861–1868 [View Article][PubMed][PubMed]
    [Google Scholar]
  17. Chang S-C, Wang J-T, Vandamme P, Hwang J-H, Chang P-S et al. Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. Syst Appl Microbiol 2004; 27:43–49 [View Article][PubMed][PubMed]
    [Google Scholar]
  18. Nokhal TH, Schlegel HG. Taxonomic study of Paracoccus denitrificans . Int J Syst Bacteriol 1983; 33:26–37 [View Article]
    [Google Scholar]
  19. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  20. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp 121–161
    [Google Scholar]
  21. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp 265–309
    [Google Scholar]
  22. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed][PubMed]
    [Google Scholar]
  23. Anzai Y, Kudo Y, Oyaizu H. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 1997; 47:249–251 [View Article][PubMed][PubMed]
    [Google Scholar]
  24. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed][PubMed]
    [Google Scholar]
  25. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed][PubMed]
    [Google Scholar]
  26. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed][PubMed]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed][PubMed]
    [Google Scholar]
  29. Kluge AG, Farris JS. Quantitative Phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [View Article]
    [Google Scholar]
  30. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed][PubMed]
    [Google Scholar]
  31. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016; 32:3047–3048 [View Article][PubMed][PubMed]
    [Google Scholar]
  32. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed][PubMed]
    [Google Scholar]
  33. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed][PubMed]
    [Google Scholar]
  34. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol 2017; 34:2115–2122 [View Article][PubMed][PubMed]
    [Google Scholar]
  35. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res 2016; 44:D286–D293 [View Article][PubMed][PubMed]
    [Google Scholar]
  36. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed][PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed][PubMed]
    [Google Scholar]
  38. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. Dna-Dna hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed][PubMed]
    [Google Scholar]
  39. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed][PubMed]
    [Google Scholar]
  40. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed][PubMed]
    [Google Scholar]
  41. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [View Article]
    [Google Scholar]
  42. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article][PubMed][PubMed]
    [Google Scholar]
  43. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article][PubMed][PubMed]
    [Google Scholar]
  44. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed][PubMed]
    [Google Scholar]
  45. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article][PubMed][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004191
Loading
/content/journal/ijsem/10.1099/ijsem.0.004191
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error