1887

Abstract

A soil bacterium, designated ZX9611, was isolated from Taihang Mountain in Henan province, PR China. The strain was Gram-stain-negative and strictly aerobic. The cells were motile, rod-shaped and formed light pink-colored colonies. The 16S rRNA gene sequence of ZX9611 shared the highest similarities with those of CCP-7 (97.0%), S5-249 (96.6%) and 382 (95.9%). Phylogenetic analyses based on 16S rRNA gene sequences demonstrated that ZX9611 clustered with CCP-7, S5-249 and 382. The average nucleotide identity (ANI) values between ZX9611 and two type strains ( BCRC 81096 and DSM 27345) were 88.3 and 68.6% respectively. ZX9611 exhibited genome-sequence-based digital DNA–DNA hybridization (dDDH) values of 53.3 % and 15.3 %, compared with BCRC 81096 and . DSM 27345, respectively. ZX9611 had a genome size of 4.12 Mb and an average DNA G+C content of 64.8 %. ZX9611 had major fatty acids (>5 %) including summed feature 8 (C ω7 and/or C ω6), C 2-OH, C and summed feature 3 (C ω7 and/or C ω6), and the major polyamine was sym-homospermidine. The only respiratory quinone was ubiquinone-10. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and sphingoglycolipid. On the basis of phenotypic, chemotaxonomic and phylogenetic characteristics, strain ZX9611 represents a novel species of genus for which the name sp. nov. is proposed. The type strain is ZX9611 (=KCTC 72622=CCTCC AB 2019350).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 31670108)
    • Principle Award Recipient: Zixiao Xu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004187
2020-05-14
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/6/3606.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004187&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 1990; 34:99–119 [View Article][PubMed]
    [Google Scholar]
  2. Lee K-B, Liu C-T, Anzai Y, Kim H, Aono T et al. The hierarchical system of the 'Alphaproteobacteria': description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 2005; 55:1907–1919 [View Article][PubMed]
    [Google Scholar]
  3. Yabuuchi E, Kosako Y, Naka T, Suzuki S, Yano I. Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and brown 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al. 1997) comb. nov., and emendation of the genus Sphingomonas . Microbiol Immunol 1999; 43:339–349 [View Article][PubMed]
    [Google Scholar]
  4. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I et al. Emendation of the genus Sphingomonas Yabuuchi, et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium, and Sphingopyxis, in conjunction with Blastomonas ursincola . Int J Syst Evol Microbiol 2002:1485–1496
    [Google Scholar]
  5. Busse H-J, Denner EBM, Buczolits S, Salkinoja-Salonen M, Bennasar A et al. Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas . Int J Syst Evol Microbiol 2003; 53:1253–1260 [View Article][PubMed]
    [Google Scholar]
  6. Chen H, Jogler M, Rohde M, Klenk H-P, Busse H-J et al. Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas . Int J Syst Evol Microbiol 2012; 62:2835–2843 [View Article][PubMed]
    [Google Scholar]
  7. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article][PubMed]
    [Google Scholar]
  8. Maruyama T, Park H-D, Ozawa K, Tanaka Y, Sumino T et al. Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 2006; 56:85–89 [View Article][PubMed]
    [Google Scholar]
  9. Holmes B, Owen RJ, Evans A, Malnick H, Willcox WR. Pseudomonas paucimobilis, a new species isolated from human clinical specimens, the hospital environment, and other sources. Int J Syst Bacteriol 1977; 27:133–146 [View Article]
    [Google Scholar]
  10. Gao J-L, Sun P, Wang X-M, Cheng S, Lv F et al. Sphingomonas zeicaulis sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 2016; 66:3755–3760 [View Article][PubMed]
    [Google Scholar]
  11. Yan Z-F, Lin P, Won K-H, Li C-T, Park G et al. Sphingomonas rhizophila sp. nov., isolated from rhizosphere of Hibiscus syriacus . Int J Syst Evol Microbiol 2018; 68:681–686 [View Article][PubMed]
    [Google Scholar]
  12. Ko Y, Hwang WM, Kim M, Kang K, Ahn T-Y. Sphingomonas silvisoli sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:2704–2710 [View Article][PubMed]
    [Google Scholar]
  13. Xue H, Piao C-G, Wang X-Z, Lin C-L, Guo M-W et al. Sphingomonas aeria sp. nov., isolated from air. Int J Syst Evol Microbiol 2018; 68:2866–2871 [View Article][PubMed]
    [Google Scholar]
  14. Zhou X-K, Mi Q-L, Yao J-H, Wu H, Liu X-M et al. Sphingomonas tabacisoli sp. nov., a member of the genus Sphingomonas, isolated from rhizosphere soil of Nicotiana tabacum L. Int J Syst Evol Microbiol 2018; 68:2574–2579 [View Article][PubMed]
    [Google Scholar]
  15. Parte AC. LPSN – List of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article]
    [Google Scholar]
  16. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  17. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  18. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  21. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10:1073–1095 [View Article][PubMed]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  23. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  24. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  25. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  26. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  28. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  29. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article][PubMed]
    [Google Scholar]
  30. Bernardet J-F, Nakagawa Y, Holmes B. Subcommittee On The Taxonomy Of Flavobacterium And Cytophaga-Like Bacteria Of The International Committee On Systematics Of Prokaryotes. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  31. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8:87–91 [View Article]
    [Google Scholar]
  32. Tarrand JJ, Gröschel DH. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 1982; 16:772–774 [View Article][PubMed]
    [Google Scholar]
  33. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  34. Cowan ST, Steel KJ. Manual for the identification of medical bacteria. Q Rev Biol 1970; 17:680–259
    [Google Scholar]
  35. Hugh R, Leifson E. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram negative bacteria. J Bacteriol 1953; 66:24–26 [View Article][PubMed]
    [Google Scholar]
  36. Prescott LM, Harley JP. The effects of chemical agents on bacteria II: antimicrobial agents (Kirby–Bauer Method). In Prescott LM, Harley JP. (editors) Laboratory Exercises in Microbiology, 5th edn. New York: McGraw-Hill; 2001 pp 257–262
    [Google Scholar]
  37. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  38. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  39. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  40. Chen H, Jogler M, Tindall BJ, Klenk H-P, Rohde M et al. Sphingomonas starnbergensis sp. nov., isolated from a prealpine freshwater lake. Int J Syst Evol Microbiol 2013; 63:1017–1023 [View Article][PubMed]
    [Google Scholar]
  41. Shih-Yi S, Xie Y, Soon-Wo K, Ceshing S, Chen W et al. Sphingomonas crocodyli sp. nov.. isolated from a crocodile pond Int J Syst Evol Microbiol 2019; 69:2153–2160
    [Google Scholar]
  42. Madhaiyan M, Alex THH, Cho H, Kim S-J, Weon H-Y et al. Sphingomonas jatrophae sp. nov. and Sphingomonas carotinifaciens sp. nov., two yellow-pigmented endophytes isolated from stem tissues of Jatropha curcas L. Int J Syst Evol Microbiol 2017; 67:5150–5158 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004187
Loading
/content/journal/ijsem/10.1099/ijsem.0.004187
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error