1887

Abstract

During a survey of fungi in native forests in Chile, several unidentified isolates of were collected from different hosts. The isolates were characterized based on DNA comparisons, morphology, culture characteristics and host affiliation, in accordance with previous descriptions. Phylogenetic analysis of the ITS region, combined with partial and genes, showed that the isolates formed three distinct groups representing three new taxa. The three new species of , on , on and on are described and illustrated in the present study.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004183
2020-04-29
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3379.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004183&mimeType=html&fmt=ahah

References

  1. Corporación Nacional Forestal 2018; Superficies Catastros Usos de Suelos y Recursos Vegetacionales, Noviembre 2018. [updated 2019 May 8; cited 2019 Nov 18]. https://sit.conaf.cl/exp/ficha.php
  2. Arnold FE. Native forest policy in Chile: understanding sectoral process dynamics in a country with an emerging economy. Int Forest Rev 2003; 5:317–328 [CrossRef]
    [Google Scholar]
  3. Nahuelhual L, Donoso P, Lara A, Núñez D, Oyarzún C et al. Valuing ecosystem services of Chilean temperate rainforests. Environ Dev Sustain 2007; 9:481–499 [CrossRef]
    [Google Scholar]
  4. Escobar C. Simulating Current Regional Pattern and Composition of Chilean Native Forests Using a Dynamic Ecosystem Model [Master degree thesis] Sweden: Lund University; 2013
    [Google Scholar]
  5. Udayanga D, Liu X, McKenzie EHC, Chukeatirote E, Bahkali AHA et al. The genus Phomopsis: biology, applications, species concepts and names of common phytopathogens. Fungal Divers 2011; 50:189–225 [CrossRef]
    [Google Scholar]
  6. Gomes RR, Glienke C, Videira SIR, Lombard L, Groenewald JZ et al. Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 2013; 31:1–41 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  7. Gao Y, Liu F, Cai L. Unravelling Diaporthe species associated with Camellia . Systematics and Biodiversity 2016; 14:102–117 [CrossRef]
    [Google Scholar]
  8. van Niekerk JM, Groenewald JZ, Farr DF, Fourie PH, Halleen F et al. Reassessment of Phomopsis species on grapevines. Australasian Plant Pathology 2005; 34:27–39 [CrossRef]
    [Google Scholar]
  9. Gopal K, Lakshmi LM, Sarada G, Nagalakshmi T, Sankar TG et al. Citrus melanose (Diaporthe citri wolf): a review. IJCMAS 2014; 3:113–124
    [Google Scholar]
  10. Guarnaccia V, Crous PW. Emerging citrus diseases in Europe caused by species of Diaporthe . IMA Fungus 2017; 8:317–334 [CrossRef]
    [Google Scholar]
  11. Santos L, Alves A, Alves R. Evaluating multi-locus phylogenies for species boundaries determination in the genus Diaporthe . PeerJ 2017; 5:e312 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  12. Dissanayake AJ, Phillips AJL, Hyde KD, Yan JY, XH L. The current status of species in Diaporthe . Mycosphere 2017; 8:1106–1156 [CrossRef]
    [Google Scholar]
  13. Marin-Felix Y, Hernández-Restrepo M, Wingfield MJ, Akulov A, Carnegie AJ et al. Genera of phytopathogenic fungi: GOPHY 2. Stud Mycol 2019; 92:47–133 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  14. Hyde KD et al. Mycosphere notes 169–224. Mycosphere 2018; 9:271–430 [CrossRef]
    [Google Scholar]
  15. Yang Q, Fan X-L, Guarnaccia V, Tian C-M. High diversity of Diaporthe species associated with dieback diseases in China, with twelve new species described. MycoKeys 2018; 39:97–149 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  16. Long H, Zhang Q, Hao Y-Y, Shao X-Q, Wei X-X et al. Diaporthe species in south-western China. MycoKeys 2019; 57:113–127 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  17. Zhou H, Hou CL. Three new species of Diaporthe from China based on morphological characters and DNA sequence data analyses. Phytotaxa 2019; 422:157–174
    [Google Scholar]
  18. Guarnaccia V, Crous PW. Species of Diaporthe on Camellia and Citrus in the Azores Islands. Phytopathologia Mediterranea 2018; 57:307–319
    [Google Scholar]
  19. Machingambi NM, Dreyer LL, Oberlander KC, Roux J, Roets F. Death of endemic Virgilia oroboides trees in South Africa caused by Diaporthe virgiliae sp. nov. Plant Pathology 2015; 64:1149–1156 [CrossRef]
    [Google Scholar]
  20. Farr DF, Rossman AY. Fungal databases, U.S. national fungus collections, ARS, USDA. https://nt.ars-grin.gov/fungaldatabases/ 2019 Sep 6
  21. Mujica F, Vergara C. Flora fungosa chilena. In Oehrens E. editor , 2nd ed. Santiago: Editorial Universitaria; 1980 p 308
  22. Cooke DEL, Duncan JM. Phylogenetic analysis of Phytophthora species based on ITS1 and ITS2 sequences of the ribosomal RNA gene repeat. Mycol Res 1997; 101:667–677 [CrossRef]
    [Google Scholar]
  23. White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Gelfand DH, Sninsky JJ, White TJ. (editors) PCR protocols: A Guide to Methods and Applications New York: Academic Press; 1990 pp 315–324
    [Google Scholar]
  24. Aveskamp MM, Verkley GJM, de Gruyter J, Murace MA, Perelló A et al. DNA phylogeny reveals polyphyly of Phoma section Peyronellaea and multiple taxonomic novelties. Mycologia 2009; 101:363–382 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  25. Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 1999; 91:553–556 [CrossRef]
    [Google Scholar]
  26. O'Donnell K, Kistler HC, Cigelnik E, Ploetz RC. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci U S A 1998; 95:2044–2049 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  27. Dissanayake AJ, Camporesi E, Hyde KD, Zhang W, Yan JY. Molecular phylogenetic analysis reveals seven new Diaporthe species from Italy. Mycosphere 2017; 8:853–877 [CrossRef]
    [Google Scholar]
  28. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  29. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009; 25:1972–1973 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  30. Farris JS, Kallersjo M, Kluge AG, Bult C. Testing significance of incongruence. Cladistics 1994; 10:315–319 [CrossRef]
    [Google Scholar]
  31. Swofford DL. PAUP* Version 4.0 b10. Phylogenetic Analysis Using Parsimony (* and Other Methods) Massachusetts: Sinauer Associates; 2002
    [Google Scholar]
  32. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  33. Miller MA, Schwartz T, Pickett BE, He S, Klem EB et al. A RESTful API for access to phylogenetic tools via the CIPRES science gateway. Evol Bioinform Online 2015; 11:EBO.S21501–48 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  34. Smith H, Wingfield MJ, Coutinho TA, Crous PW. Sphaeropsis sapinea and Botryosphaeria dothidea endophytic in Pinus spp. and Eucalyptus spp. in South Africa. S Afr J Bot 1996; 62:86–88 [CrossRef]
    [Google Scholar]
  35. Smith H, Wingfied MJ, Coutinho TA. The role of latent Sphaeropsis sapinea infections in post-hail associated die-back of Pinus patula . For Ecol Manage 2002; 164:177–184 [CrossRef]
    [Google Scholar]
  36. Henriot A, Cheype JL. Piximètre: La mesure de dimensions sur images. Version 5.9 R1532 novembre 2017. [cited 2019 Jun 5]. Available from: http://ach.log.free.fr/Piximetre .
  37. Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G. MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology 2004; 50:19–22
    [Google Scholar]
  38. Sullivan J. Combining data with different distributions of among-site variation. Syst Biol 1996; 45:375–380 [CrossRef]
    [Google Scholar]
  39. Cunningham CW. Can three incongruence tests predict when data should be combined?. Mol Biol Evol 1997; 14:733–740 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  40. Grove WB. British Stem and Leaf-Fungi (Coelomycetes) 1 Cambridge: Cambridge University Press; 1935 p 488
    [Google Scholar]
  41. Spegazzini C, Fuegiani F. Boletin de la academia Nacional de Ciencias en Cordoba; 1887; 11135–311
  42. Saccardo PA, Sydow P. Supplementum Universale, pars IV. Sylloge fungorum; 1899; 141–1316
  43. Udayanga D, Liu X, Crous PW, McKenzie EHC, Chukeatirote E et al. A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis). Fungal Divers 2012; 56:157–171 [CrossRef]
    [Google Scholar]
  44. Veblen TT, Burns BR, Kitzberger T, Lara A, Villalba A. The ecology of the conifers of Southern South America. In Enright NJ, Hill RS. (editors) Ecology of the Southern Conifers Victoria: Melbourne University Press; 1995 pp 129–135
    [Google Scholar]
  45. Royal Botanic Gardens, Kew [internet Fungi and Lichens of Great Britain and Ireland. [updated 2011 Oct 31; cited 2019 Sep 19]. Available from: http://fungi.myspecies.info/all-fungi/diaporthe-beckhausii .
  46. Bustos-Salazar A, Smith-Ramírez C, Zúñiga-Feest A, Alves F, Ivanovich R. Which seed origin provides better tolerance to flooding and drought when restoring to face climate change?. Austral Ecology 2017; 42:934–946 [CrossRef]
    [Google Scholar]
  47. Misle E, Garrido E, Contardo H, González W. Maqui [Aristotelia chilensis (Mol.) Stuntz]-the amazing chilean tree: a review. Journal of Agricultural Science and Technology 2011; B1:473–482
    [Google Scholar]
  48. Tan YP, Edwards J, Grice KRE, Shivas RG. Molecular phylogenetic analysis reveals six new species of Diaporthe from Australia. Fungal Divers 2013; 61:251–260 [CrossRef]
    [Google Scholar]
  49. Santos JM, Phillips AJ. Resolving the complex of Diaporthe (Phomopsis) species occurring on Foeniculum vulgare in Portugal. Fungal Diversity 2009; 34:111–125
    [Google Scholar]
  50. McTavish CK, Catal M, Fulbright DW, Jarosz AM. Spruce decline and Diaporthe: incidence, taxonomy, virulence, and tree susceptibility in Michigan. Plant Dis 2018; 102:2330–2340 [CrossRef][PubMed][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004183
Loading
/content/journal/ijsem/10.1099/ijsem.0.004183
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error