sp. nov., isolated from wound samples of patients in a hospital in Myanmar Free

Abstract

Strains of a Gram-negative, aerobic, rod-shaped, non-spore-forming bacterium, designated MY50, MY63 and MY101, were isolated from wound samples of three hospitalized patients in Yangon, Myanmar. Strains MY50, MY63 and MY101 grew at temperatures of 4–44 °C, in media containing 1.0–7.0 % (w/v) NaCl and at pH 6.0–9.5. Phylogenetic analysis based on 16S rRNA gene and whole genome sequences showed that these strains belonged to the genus and were part of the group and located close to and . Whole-genome comparisons, using average nucleotide identity and digital DNA–DNA hybridization analyses, confirmed that strains MY50, MY63 and MY101 were the same strain and they were a distinct species in the group. Results of phenotypic characterization tests demonstrated that utilization of p-hydroxy-phenylacetic acid, glycerol, -pyroglutamic acid and quinic acid could distinguish these strains from other species of the group. These genetic and phenotypic characteristics suggest that they should be classified as representing a novel species, under the proposed name sp. nov. The type strain is MY50 (=LMG 31602,=JCM 33396), with a DNA G+C content of 62.82 mol%.

Funding
This study was supported by the:
  • JU Research Fund (Keiko Yamazaki)
    • Principle Award Recipient: Teruo Kirikae
  • Japan Agency for Medical Research and Development (Award 19fk0108061h0302)
    • Principle Award Recipient: Teruo Kirikae
  • Japan Society for the Promotion of Science (Award 19KK0203)
    • Principle Award Recipient: Teruo Kirikae
  • Japan Society for the Promotion of Science (Award 19K16652)
    • Principle Award Recipient: Mari Tohya
  • Japan Society for the Promotion of Science (Award 18K07121)
    • Principle Award Recipient: Teruo Kirikae
  • Japan Society for the Promotion of Science (Award 18K07120)
    • Principle Award Recipient: Tatsuya Tada
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004181
2020-06-05
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/6/3597.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004181&mimeType=html&fmt=ahah

References

  1. Palleroni NJ. Pseudomonas. In Brenner DJ, Krieg NR, Staley JT. (editors) Bergey’s Manual of Systematic Bacteriology 2 New York: Springer; 2005 pp 323–379
    [Google Scholar]
  2. Iglewski BH. Chapter 27 Pseudomonas . In Baron S. editor Medical Microbiology, 4th ed. Galveston: University of Texas Medical Branch at Galveston; 1996
    [Google Scholar]
  3. Tohya M, Watanabe S, Teramoto K, Uechi K, Tada T et al. Pseudomonas asiatica sp. nov., isolated from hospitalized patients in Japan and Myanmar. Int J Syst Evol Microbiol 2019; 69:1361–1368 [View Article][PubMed]
    [Google Scholar]
  4. Tohya M, Tada T, Watanabe S, Kuwahara-Arai K, Zin KN et al. Emergence of Carbapenem-Resistant Pseudomonas asiatica Producing NDM-1 and VIM-2 Metallo-β-Lactamases in Myanmar. Antimicrob Agents Chemother 2019; 63: [View Article][PubMed]
    [Google Scholar]
  5. Peix A, Ramírez-Bahena M-H, Velázquez E. The current status on the taxonomy of Pseudomonas revisited: An update. Infect Genet Evol 2018; 57:106–116 [View Article][PubMed]
    [Google Scholar]
  6. Gautam L, Kaur R, Kumar S, Bansal A, Gautam V et al. Pseudomonas oleovorans sepsis in a child: the first reported case in India. Jpn J Infect Dis 2015; 68:254–255 [View Article][PubMed]
    [Google Scholar]
  7. Aragone MR, Maurizi DM, Clara LO, Navarro Estrada JL, Ascione A. Pseudomonas mendocina, an environmental bacterium isolated from a patient with human infective endocarditis. J Clin Microbiol 1992; 30:1583–1584 [View Article][PubMed]
    [Google Scholar]
  8. Sudan SK, Pal D, Bisht B, Kumar N, Chaudhry V et al. Pseudomonas fluvialis sp. nov., a novel member of the genus Pseudomonas isolated from the river Ganges, India. Int J Syst Evol Microbiol 2018; 68:402–408 [View Article][PubMed]
    [Google Scholar]
  9. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 1989; 17:7843–7853 [View Article][PubMed]
    [Google Scholar]
  10. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  11. Kimura M. The Neutral Theory of Molecular Evolution Cambridge University Press; 1983
    [Google Scholar]
  12. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  14. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  15. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 2017; 45:D535–D542 [View Article][PubMed]
    [Google Scholar]
  16. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 2005; 102:2567–2572 [View Article][PubMed]
    [Google Scholar]
  17. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  18. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  19. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  20. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E. Phylogenomics and systematics in Pseudomonas . Front Microbiol 2015; 6:214 [View Article][PubMed]
    [Google Scholar]
  21. Murray RGE, Robinow CF. Sampling and Staining for Light Microscopy. Methods for General and Molecular Microbiology 1994 pp 21–41
    [Google Scholar]
  22. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954; 44:301–307[PubMed]
    [Google Scholar]
  23. Amoozegar MA, Shahinpei A, Sepahy AA, Makhdoumi-Kakhki A, Seyedmahdi SS et al. Pseudomonas salegens sp. nov., a halophilic member of the genus Pseudomonas isolated from a wetland. Int J Syst Evol Microbiol 2014; 64:3565–3570 [View Article][PubMed]
    [Google Scholar]
  24. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article][PubMed]
    [Google Scholar]
  25. Teramoto K, Sato H, Sun L, Torimura M, Tao H et al. Phylogenetic classification of Pseudomonas putida strains by MALDI-MS using ribosomal subunit proteins as biomarkers. Anal Chem 2007; 79:8712–8719 [View Article][PubMed]
    [Google Scholar]
  26. National Committee for Clinical Laboratory Standards Performance Standards for Antimicrobial Susceptibility Testing; 28th Informational Supplement, M100-S25 Wayne, PA: Clinical and Laboratory Standards Institute; 2018
    [Google Scholar]
  27. Matsumoto M, Shigemura K, Shirakawa T, Nakano Y, Miyake H et al. Mutations in the gyrA and parC genes and in vitro activities of fluoroquinolones in 114 clinical isolates of Pseudomonas aeruginosa derived from urinary tract infections and their rapid detection by denaturing high-performance liquid chromatography. Int J Antimicrob Agents 2012; 40:440–444 [View Article][PubMed]
    [Google Scholar]
  28. Chen P, Li S, Li QX. Pseudomonas tianjinensis sp. nov., isolated from domestic sewage. Int J Syst Evol Microbiol 2018; 68:2760–2769 [View Article][PubMed]
    [Google Scholar]
  29. Gibello A, Vela AI, Martín M, Mengs G, Alonso PZ et al. Pseudomonas composti sp. nov., isolated from compost samples. Int J Syst Evol Microbiol 2011; 61:2962–2966 [View Article][PubMed]
    [Google Scholar]
  30. Wu M, Wen J, Chang M, Yang G, Zhou S. Pseudomonas sihuiensis sp. nov., isolated from a forest soil in South China. Antonie van Leeuwenhoek 2014; 105:781–790 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004181
Loading
/content/journal/ijsem/10.1099/ijsem.0.004181
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed