gen. nov., sp. nov., an acidophilic and obligately heterotrophic, member of the Actinobacteria that catalyses dissimilatory oxido-reduction of iron isolated from metal-rich acidic water in Chile Free

Abstract

A novel acidophilic member of the phylum was isolated from an acidic, metal-contaminated stream draining from an abandoned underground coal mine (Trongol mine), situated close to Curanilahue, Biobío Region, Chile. The isolate (USS-CCA1) was demonstrated to be a heterotroph that catalysed under aerobic conditions the oxidation of ferrous iron and the reduction of ferric iron under anaerobic conditions, but not the oxidation of sulfur nor hydrogen. USS-CCA1 is a Gram-positive, motile, short rod-shaped, mesophilic bacterium with a temperature growth optimum at 30 °C (range 20–39 °C). It was categorized as an extreme acidophile growing between 1.7 and 4.5 and optimally at pH 3.0. The G+C content of the chromosomal DNA of the isolate was 74.1 mol%, which is highly related to IC-180 (the most closely related genus; 94.4 % 16S rRNA gene identity), and higher than other acidophilic actinobacteria. The isolate (USS-CCA1) was shown to form a distinct 16S rRNA clade from characterized acidophilic actinobacteria, well separated from the genera , , , and . Genomic indexes (ANIb, DDH, AAI, POCP) derived from the USS-CCA1 draft genome sequence (deposited at DDBJ/ENA/GenBank under the accession WJHE00000000) support assignment of the isolate to a new species and a new genus within the family. Isolate USS-CCA1 is the designated type strain of the novel species (=DSM 106828,=RGM 2506).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004179
2020-04-28
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3348.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004179&mimeType=html&fmt=ahah

References

  1. González D, Liu Y, Villa Gomez D, Southam G, Hedrich S et al. Performance of a sulfidogenic bioreactor inoculated with indigenous acidic communities for treating an extremely acidic mine water. Miner Eng 2019; 131:370–375 [View Article]
    [Google Scholar]
  2. Holanda R, Hedrich S, Ňancucheo I, Oliveira G, Grail BM et al. Isolation and characterisation of mineral-oxidising "Acidibacillus" spp. from mine sites and geothermal environments in different global locations. Res Microbiol 2016; 167:613–623 [View Article][PubMed][PubMed]
    [Google Scholar]
  3. Clark DA, Norris PR. Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed-culture ferrous iron oxidation with Sulfobacillus species. Microbiology 1996; 142:785–790 [View Article]
    [Google Scholar]
  4. Johnson DB, Bacelar-Nicolau P, Okibe N, Thomas A, Hallberg KB. Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. Int J Syst Evol Microbiol 2009; 59:1082–1089 [View Article][PubMed][PubMed]
    [Google Scholar]
  5. Itoh T, Yamanoi K, Kudo T, Ohkuma M, Takashina T. Aciditerrimonas ferrireducens gen. nov., sp. nov., an iron-reducing thermoacidophilic actinobacterium isolated from a solfataric field. Int J Syst Evol Microbiol 2011; 61:1281–1285 [View Article][PubMed][PubMed]
    [Google Scholar]
  6. Jones RM, Johnson DB. Acidithrix ferrooxidans gen. nov., sp. nov.; a filamentous and obligately heterotrophic, acidophilic member of the Actinobacteria that catalyzes dissimilatory oxido-reduction of iron. Res Microbiol 2015; 166:111–120 [View Article][PubMed][PubMed]
    [Google Scholar]
  7. Davis-Belmar CS, Norris PR. Ferrous iron and pyrite oxidation by Acidithiomicrobium’ species. AMR 2009; 71-73:271–274 [View Article]
    [Google Scholar]
  8. Ňancucheo I, Rowe OF, Hedrich S, Johnson DB. Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing bacteria. FEMS Microbiol Lett 2016; 363:fnw083–086 [View Article][PubMed][PubMed]
    [Google Scholar]
  9. Johnson DB, Hallberg KB. Techniques for detecting and identifying acidophilic mineral-oxidising microorganisms. In Rawlings DE, Johnson DB. (editors) Biomining. Heidelberg: Springer-Verlag; 2007 pp 237–262
  10. Johnson DB, Quatrini R. Acidophile microbiology in space and time. In Quatrini R, Johnson DB. (editors) Acidophiles: Life in Extremely Acidic Environments Caister Academic Press; 2016 pp 3–16
    [Google Scholar]
  11. Rhuland LE, Work E, Denman RF, Hoare DS. The behavior of the isomers of α,∊-diaminopimelic acid on paper chromatograms. J Am Chem Soc 1955; 77:4844–4846 [View Article]
    [Google Scholar]
  12. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477 [View Article][PubMed][PubMed]
    [Google Scholar]
  13. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
  14. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article][PubMed][PubMed]
    [Google Scholar]
  15. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  16. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  17. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. Phenotypic characterization and the principles of comparative systematics. In Eddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington: ASM Press; 2007 pp 330–393
    [Google Scholar]
  18. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981; 45:316–354 [View Article][PubMed][PubMed]
    [Google Scholar]
  19. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  20. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30:772–780 [View Article][PubMed][PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed][PubMed]
    [Google Scholar]
  22. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 2004; 101:11030–11035 [View Article][PubMed][PubMed]
    [Google Scholar]
  23. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015; 32:268–274 [View Article][PubMed][PubMed]
    [Google Scholar]
  24. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001; 17:754–755 [View Article][PubMed][PubMed]
    [Google Scholar]
  25. Shimada MK, Nishida T. A modification of the PHYLIP program: a solution for the redundant cluster problem, and an implementation of an automatic bootstrapping on trees inferred from original data. Mol Phylogenet Evol 2017; 109:409–414 [View Article][PubMed][PubMed]
    [Google Scholar]
  26. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed][PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed][PubMed]
    [Google Scholar]
  28. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article][PubMed][PubMed]
    [Google Scholar]
  29. Medlar AJ, Törönen P, Holm L. AAI-profiler: fast proteome-wide exploratory analysis reveals taxonomic identity, misclassification and contamination. Nucleic Acids Res 2018; 46:W479–W485 [View Article][PubMed][PubMed]
    [Google Scholar]
  30. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article][PubMed][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004179
Loading
/content/journal/ijsem/10.1099/ijsem.0.004179
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed