1887

Abstract

A novel obligately anaerobic, thermophilic and formate-utilizing bacterium K32 was isolated from Shengli oilfield of China. Cells were straight rods (0.4–0.8 µm × 2.5–8.0 µm), Gram-stain-positive, non-spore-forming and slightly motile. Optimum growth occurred with pH of 7 and 0.5 g l NaCl under temperature of 55–60 °C. Nitrate could be reduced into nitrite, syntrophic formate oxidation to methane and carbon dioxide occurred when co-culturing strain K32 and ΔH. The main cellular fatty acids were iso-C (24.0 %), anteiso-C (21.7 %), C (12.7 %) and C (10.8 %), and the main polar lipid was phosphatidylglycerol. The G+C content of the genomic DNA was 46.3 mol%. The 16S rRNA gene sequence of K32 shared ≤90.4 % of sequence similarity to closest type strains of , and members of the genus . Based on the phenotypic, biochemical and genotypic characterization, gen. nov., sp. nov. is proposed with K32 (=CCAM 584 =DSM 107278=CGMCC1.5297) as the type strain, which is the first representative of fam. nov. In addition, the order nd family were reclassified, and three novel families in the novel order of ord. nov. were also proposed.

Funding
This study was supported by the:
  • Lei Cheng , Key Technologies Research and Development Program (CN) , (Award 2016ZX05041001-003)
  • Lei Cheng , National Key R&D Program of China , (Award 2016YFE0127700)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004178
2020-04-29
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3361.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004178&mimeType=html&fmt=ahah

References

  1. Ludwig W, Schleifer K-H, Whitman WB et al. Revised road map to the phylum Firmicutes. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology: Volume Three The Firmicutes New York, NY: Springer New York; 2009 pp 1-–13
    [Google Scholar]
  2. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  3. Zhang X, Tu B, Dai L-R, Lawson PA, Zheng Z-Z, L-r D, Z-z Z et al. Petroclostridium xylanilyticum gen. nov., sp. nov., a xylan-degrading bacterium isolated from an oilfield, and reclassification of clostridial cluster III members into four novel genera in a new Hungateiclostridiaceae fam. nov. Int J Syst Evol Microbiol 2018; 68:3197–3211 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  4. Zhang W, Lu Z. Phylogenomic evaluation of members above the species level within the phylum Firmicutes based on conserved proteins. Environ Microbiol Rep 2015; 7:273–281 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  5. Pavan ME, Pavan EE, Glaeser SP, Etchebehere C, Kämpfer P et al. Proposal for a new classification of a deep branching bacterial phylogenetic lineage: transfer of Coprothermobacter proteolyticus and Coprothermobacter platensis to Coprothermobacteraceae fam. nov., within Coprothermobacterales ord. nov., Coprothermobacteria classis nov. and Coprothermobacterota phyl. nov. and emended description of the family Thermodesulfobiaceae . Int J Syst Evol Microbiol 2018; 68:1627–1632 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  6. Zhang X, Tu B, X-m L, Lawson PA, Yang M et al. Description of Biomaibacter acetigenes gen. nov., sp. nov., and proposal of Thermosediminibacterales ord. nov. containing two novel families of Tepidanaerobacteraceae fam. nov. and Thermosediminibacteraceae fam. nov (. Int J Syst Evol Microbiol 2019
    [Google Scholar]
  7. Cheng L, He Q, Ding C, Dai L-rong, Li Q et al. Novel bacterial groups dominate in a thermophilic methanogenic hexadecane-degrading consortium. FEMS Microbiol Ecol 2013; 85:568–577 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  8. Macy JM, Snellen JE, Hungate RE. Use of syringe methods for anaerobiosis. Am J Clin Nutr 1972; 25:1318–1323 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  9. Lane D. 16S/23S rRNA Sequencing. In Stackebrandt E, Goodfellow M. (editors) Development and Application of Nucleic Acid Probes New York: John Wiley & Son Ltd; 1991 pp 115–175
    [Google Scholar]
  10. Feng Y, Cheng L, Zhang X, Li X, Deng Y et al. Thermococcoides shengliensis gen. nov., sp. nov., a new member of the order Thermotogales isolated from oil-production fluid. Int J Syst Evol Microbiol 2010; 60:932–937 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  11. Ma S, Huang Y, Wang C, Fan H, Dai L et al. Defluviitalea raffinosedens sp. nov., a thermophilic, anaerobic, saccharolytic bacterium isolated from an anaerobic batch digester treating animal manure and rice straw. Int J Syst Evol Microbiol 2017; 67:1607–1612 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  12. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  13. Kuykendall LD, Roy MA, O'NEILL JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 1988; 38:358–361 [CrossRef]
    [Google Scholar]
  14. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  15. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  16. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. Methods for General and Molecular Microbiology, 3rd ed. American Society of Microbiology; 2007
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  19. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  21. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  22. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011; 7:e1002195 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  23. Edgar RC. Muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004; 5:113 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  24. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One 2010; 5:e9490 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  25. Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 2001; 18:691–699 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  26. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 2013; 4:2304 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  27. Drake HL, Daniel SL. Physiology of the thermophilic acetogen Moorella thermoacetica . Res Microbiol 2004; 155:422–436 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  28. Liu Y, Whitman WB, Metabolic WWB. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 2008; 1125:171–189 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  29. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  30. Luo C, Rodriguez-R LM, Konstantinidis KT. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res 2014; 42:e73 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  31. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  32. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  33. Rogosa M. Peptococcaceae, a new family to include the Gram-positive, anaerobic cocci of the genera Peptococcus, Peptostreptococcus and Ruminococcus . Int J Syst Bacteriol 1971; 21:234237 [CrossRef]
    [Google Scholar]
  34. Nielsen MB, Kjeldsen KU, Ingvorsen K. Desulfitibacter alkalitolerans gen. nov., sp. nov., an anaerobic, alkalitolerant, sulfite-reducing bacterium isolated from a district heating plant. Int J Syst Evol Microbiol 2006; 56:2831–2836 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  35. Kimura Z-I, Hoshino T, Murakami K. The status of the species Moorella thermoautotrophica Wiegel et al. 1981. Request for an opinion. Int J Syst Evol Microbiol 2016; 66:3249–3251 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  36. Balk M, van Gelder T, Weelink SA, Stams AJM. (Per)chlorate reduction by the thermophilic bacterium Moorella perchloratireducens sp. nov., isolated from underground gas storage. Appl Environ Microbiol 2008; 74:403–409 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  37. Nepomnyashchaya YN, Slobodkina GB, Baslerov RV, Chernyh NA, Bonch-Osmolovskaya EA et al. Moorella humiferrea sp. nov., a thermophilic, anaerobic bacterium capable of growth via electron shuttling between humic acid and Fe(III). Int J Syst Evol Microbiol 2012; 62:613–617 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  38. Slobodkin A, Reysenbach AL, Mayer F, Wiegel J. Isolation and characterization of the homoacetogenic thermophilic bacterium Moorella glycerini sp. nov. Int J Syst Bacteriol 1997; 47:969–974 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  39. Balk M, Weijma J, Friedrich MW, Stams AJM. Methanol utilization by a novel thermophilic homoacetogenic bacterium, Moorella mulderi sp. nov., isolated from a bioreactor. Arch Microbiol 2003; 179:315–320 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  40. Alves JI, van Gelder AH, Alves MM, Sousa DZ, Plugge CM. Moorella stamsii sp. nov., a new anaerobic thermophilic hydrogenogenic carboxydotroph isolated from digester sludge. Int J Syst Evol Microbiol 2013; 63:4072–4076 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  41. Yoneda Y, Yoshida T, Yasuda H, Imada C, Sako Y. A thermophilic, hydrogenogenic and carboxydotrophic bacterium, Calderihabitans maritimus gen. nov., sp. nov., from a marine sediment core of an undersea caldera. Int J Syst Evol Microbiol 2013; 63:3602–3608 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  42. Mori K, Hanada S, Maruyama A, Marumo K. Thermanaeromonas toyohensis gen. nov., sp. nov., a novel thermophilic anaerobe isolated from a subterranean vein in the Toyoha Mines. Int J Syst Evol Microbiol 2002; 52:1675–1680 [CrossRef][PubMed][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004178
Loading
/content/journal/ijsem/10.1099/ijsem.0.004178
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error