1887

Abstract

The Gram-strain-negative, rod-shaped, facultatively anaerobic, non-motile bacterial strain, designated S1-10, was isolated from marine sediment. Strain S1-10 grew at 4–42 °C (optimally at 30–35 °C), at pH 7.0–10 (optimally at pH 9) and in the presence of 0.5–8 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S1-10 was related to the genus and had highest 16S rRNA gene sequence similarity to 8-1b (97.7%). The predominant cellular fatty acids were iso-C and anteiso-C. The main respiratory quinone was menaquinone 6 (MK-6). The genomic DNA G+C content of strain S1-10 was 34.6 mol%. The polar lipid profile of strain S1-10 contained phosphatidylethanolamine, two aminolipids, two glycolipids, one phosphoglycolipid and three unidentified polar lipids. In addition, the maximum values of DNA–DNA hybridization (DDH) and average nucleotide identity (ANI) between strain S1-10 and CGMCC 1.11023 were 15.4 and 75.7 %, respectively. Combined data from phenotypic, phylogenetic, DDH and ANI analyses demonstrated that strain S1-10 is the representative of a novel species of the genus , for which we propose the name sp. nov. (type strain S1-10=CGMCC 1.12579=JCM 19789). We also propose that and should be transferred into genus and be named comb. nov. and comb. nov., respectively. The type strain of comb. nov. is MYP2-2 (= KCTC 62141= NBRC 113025) and the type strain of comb. nov. is D-24 (=KCTC 42708=DSM 101732).

Keyword(s): Aequorivita , sediment and Vitellibacter
Funding
This study was supported by the:
  • De-Chao Zhang , the Senior User Project of RV KEXUE , (Award KEXUE2019G09)
  • De-Chao Zhang , National Natural Science Foundation of China , (Award 31200005)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004174
2020-04-28
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3323.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004174&mimeType=html&fmt=ahah

References

  1. Bowman JP, Nichols DS. Aequorivita gen. nov., a member of the family Flavobacteriaceae isolated from terrestrial and marine Antarctic habitats. Int J Syst Evol Microbiol 2002; 52:1533–1541 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  2. Park SC, Baik KS, Kim MS, Kim SS, Kim SR et al. Aequorivita capsosiphonis sp. nov., isolated from the green alga Capsosiphon fulvescens, and emended description of the genus Aequorivita . Int J Syst Evol Microbiol 2009; 59:724–728 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  3. Hahnke RL, Meier-Kolthoff JP, García-López M, Mukherjee S, Huntemann M et al. Genome-based taxonomic classification of Bacteroidetes . Front Microbiol 2003; 2016:7
    [Google Scholar]
  4. Kim B-S, Kim O-S, Moon EY, Chun J. Vitellibacter aestuarii sp. nov., isolated from tidal-flat sediment, and an emended description of the genus Vitellibacter. Int J Syst Evol Microbiol 2010; 60:1989–1992 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  5. Rajasabapathy R, Mohandass C, Yoon J-H, Dastager SG, Liu Q et al. Vitellibacter nionensis sp. nov., isolated from a shallow water hydrothermal vent. Int J Syst Evol Microbiol 2015; 65:692–697 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  6. Park S, Lee K-C, Bae KS, Yoon J-H. Vitellibacter soesokkakensis sp. nov., isolated from the junction between the ocean and a freshwater spring and emended description of the genus Vitellibacter . Int J Syst Evol Microbiol 2014; 64:588–593 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  7. Lin S-Y, Hameed A, Wen C-Z, Liu Y-C, Hsu Y-H et al. Vitellibacter echinoideorum sp. nov., isolated from a sea urchin (Tripneustes gratilla). Int J Syst Evol Microbiol 2015; 65:2320–2325 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  8. Nedashkovskaya OI, Suzuki M, Vysotskii MV, Mikhailov VV. Vitellibacter vladivostokensis gen. nov., sp. nov., a new member of the phylum Cytophaga-Flavobacterium-Bacteroides . Int J Syst Evol Microbiol 2003; 53:1281–1286 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  9. Liu J-J, Zhang X-Q, Pan J, Sun C, Zhang Y et al. Aequorivita viscosa sp. nov., isolated from an intertidal zone, and emended descriptions of Aequorivita antarctica and Aequorivita capsosiphonis . Int J Syst Evol Microbiol 2013; 63:3192–3196 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  10. Zhang DC, Schumann P, Wu J, Franca L, Neuner K et al. Virgibacillus flavescens sp. nov. isolated from sediment of the Yellow Sea in China. Int J Syst Evol Microbiol 2016; 66:1138–1143
    [Google Scholar]
  11. Sambrook J, Russell DW. Molecular Cloning: a Laboratory Manual Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 2001
    [Google Scholar]
  12. Zhang D-C, Redzic M, Schinner F, Margesin R. Glaciimonas immobilis gen. nov., sp. nov., a member of the family Oxalobacteraceae isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 2011; 61:2186–2190 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  13. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  15. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  17. Li R, Li Y, Kristiansen K, Wang J. Soap: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  18. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  19. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  20. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  21. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the bacteria and archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  22. Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF et al. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 2011; 12:124 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  23. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  25. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992; 8:275–282 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  26. Dong XZ, Cai MY. (editors) Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation); 2001
    [Google Scholar]
  27. Süßmuth R, Eberspächer J, Haag R, Springer W. Biochemisch-mikrobiologisches Praktikum Stuttgart: Georg Thieme Verlag; 1987
    [Google Scholar]
  28. Margesin R, Gander S, Zacke G, Gounot AM, Schinner F. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 2003; 7:451–458 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  29. Bernardet J-F, Bowman JP. The genus Flavobacterium . In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. (editors) The Prokaryotes, a Handbook on the Biology of Bacteria 7, 3rd ed. New York: Springer; 2006 pp 481–531
    [Google Scholar]
  30. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note 101. Newark, DE: MIDI; 1990
    [Google Scholar]
  31. Thevarajoo S, Selvaratnam C, Goh KM, Hong KW, Chan XY et al. Vitellibacter aquimaris sp. nov., a marine bacterium isolated from seawater. Int J Syst Evol Microbiol 2016; 66:3662–3668 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  32. Kim HC, Kim Y-O, Park S, Nam B-H, Kim D-G et al. Vitellibacter todarodis sp. nov., isolated from intestinal tract of a squid (Todarodes pacificus). Int J Syst Evol Microbiol 2018; 68:1233–1237 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  33. Altenburgera P, Kämpferb P, Makristathisc A, Lubitza W, Bussea H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52 [CrossRef]
    [Google Scholar]
  34. Stolz A, Busse H-J, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57:572–576 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  35. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  36. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [CrossRef]
    [Google Scholar]
  37. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004174
Loading
/content/journal/ijsem/10.1099/ijsem.0.004174
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error