1887

Abstract

Two Gram-stain-negative, catalase- and oxidase-positive, rod-shaped, motile strains (FT29W and FT103W) were isolated from a subtropical stream in PR China. Comparisons based on 16S rRNA gene sequences showed that strains FT29W and FT103W showed 98.7 and 98.6 % 16S rRNA gene sequence similarities to CCM 3730 as their closest neighbour, respectively. The calculated pairwise OrthoANIu values between strain CCM 3730 and strains FT29W and FT103W were all 81.4 %. The respiratory quinone of strains FT29W and FT103W was determined to be Q-8. The major fatty acids were C ω7, C and C. The polar lipids of strain FT103W included phosphatidylethanolamine, phosphatidylglycerol and one unidentified phospholipid, but strain FT29W did not contain phosphatidylglycerol. The genome sizes of strains FT29W and FT103W were 7.23 and 6.84 Mbp with G+C contents of 63.8 and 63.9 %, respectively. Although the pairwise OrthoANIu value between strains FT29W and FT103W was 95.2 % which located in the transition region of species demarcation, the dissimilarities in the aspects of phenotypic, biochemical and genotypic characteristics supported these two strains should belong to the different species within genus , for which the names sp. nov. (type strain FT29W=GDMCC 1.1643=KACC 21316) and sp. nov. (type strain FT103W=GDMCC 1.1685=KACC 21477) are proposed.

Funding
This study was supported by the:
  • Guangdong MEPP Fund (Award NO. GDOE(2019)A34)
    • Principle Award Recipient: Meiying Xu
  • GDAS’ Special Project of Science and Technology Development (Award 2018GDASCX-0916)
    • Principle Award Recipient: Meiying Xu
  • National Natural Science Foundation of China (Award 91851202, 51678163)
    • Principle Award Recipient: Meiying Xu
  • Guangdong Provincial Programs for Science and Technology Development (Award 2019B110205004; 2018B020205003; 2018B030324002)
    • Principle Award Recipient: Meiying Xu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004172
2020-04-28
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3328.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004172&mimeType=html&fmt=ahah

References

  1. Austin DA, Moss MO. Numerical taxonomy of red-pigmented bacteria isolated from a lowland river, with the description of a new taxon, Rugamonas rubra gen. nov., sp. nov. J Gen Microbiol 1986; 132:1899–1909 [View Article]
    [Google Scholar]
  2. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic acid sequencing techniques in bacterial systematics New York, USA: Wiley; 1991 pp 115–175
    [Google Scholar]
  3. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed][PubMed]
    [Google Scholar]
  4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed][PubMed]
    [Google Scholar]
  5. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed][PubMed]
    [Google Scholar]
  6. Kimura M. The neutral theory of molecular evolution. Sci Am 1979; 241:98–126 [View Article][PubMed][PubMed]
    [Google Scholar]
  7. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed][PubMed]
    [Google Scholar]
  8. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [View Article]
    [Google Scholar]
  9. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed][PubMed]
    [Google Scholar]
  10. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 1870; 2016:33
    [Google Scholar]
  11. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed][PubMed]
    [Google Scholar]
  12. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed][PubMed]
    [Google Scholar]
  13. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed][PubMed]
    [Google Scholar]
  14. Richter M, Rosselló-Móra R, Michael R, Ramon RM. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed][PubMed]
    [Google Scholar]
  15. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing, China: Beijing Scientific Press; 2001
    [Google Scholar]
  16. Lu H, Xing P, Phurbu D, Tang Q, Wu Q. Pelagibacterium montanilacus sp. nov., an alkaliphilic bacterium isolated from lake Cuochuolong on the Tibetan Plateau. Int J Syst Evol Microbiol 2018; 68:2220–2225 [View Article][PubMed][PubMed]
    [Google Scholar]
  17. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic gram-negative rods. J Gen Microbiol 1982; 128:1959–1968 [View Article]
    [Google Scholar]
  18. Zhong Z-P, Liu Y, Wang F, Zhou Y-G, Liu H-C et al. Lacimicrobium alkaliphilum gen. nov., sp. nov., a member of the family Alteromonadaceae isolated from a salt lake. Int J Syst Evol Microbiol 2016; 66:422–429 [View Article][PubMed][PubMed]
    [Google Scholar]
  19. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  20. Sasser M. Identification of bacteria through fatty acid analysis. In Klement Z, Rudolph K, Sands DC. (editors) Methods in Phytobacteriology Budapest, Hungary: Akademiai Kaido; 1990 pp 199–204
    [Google Scholar]
  21. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  22. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  23. Baldani JI, Rouws L, Cruz LM, Olivares FL, Schmid M et al. The Family Oxalobacteraceae . In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes: Alphaproteobacteria and Betaproteobacteria Berlin, Heidelberg: Springer Berlin Heidelberg; 2014 pp 919–974
    [Google Scholar]
  24. Hiraishi A, Shin YK, Sugiyama J. Proposal to reclassify Zoogloea ramigera IAM 12670 (P. R. Dugan 115) as Duganella zoogloeoides gen. nov., sp. nov. Int J Syst Bacteriol 1997; 47:1249–1252 [View Article][PubMed][PubMed]
    [Google Scholar]
  25. Kämpfer P, Wellner S, Lohse K, Martin K, Lodders N. Duganella phyllosphaerae sp. nov., isolated from the leaf surface of Trifolium repens and proposal to reclassify Duganella violaceinigra into a novel genus as Pseudoduganella violceinigra gen. nov., comb. nov. Syst Appl Microbiol 2012; 35:19–23 [View Article][PubMed][PubMed]
    [Google Scholar]
  26. Zhang J, Kim Y-J, Hoang V-A, Lan Nguyen N, Wang C et al. Duganella ginsengisoli sp. nov., isolated from ginseng soil. Int J Syst Evol Microbiol 2016; 66:56–61 [View Article][PubMed][PubMed]
    [Google Scholar]
  27. Lincoln SP, Fermor TR, Tindall BJ. Janthinobacterium agaricidamnosum sp. nov., a soft rot pathogen of Agaricus bisporus . Int J Syst Bacteriol 1999; 49:1577–1589 [View Article][PubMed][PubMed]
    [Google Scholar]
  28. De Ley J, Segers P, Gillis M. Intra and intergeneric similarities of Chromobacterium and Janthinobacterium ribosomal ribonucleicacid cistrons. Int J Syst Bacteriol 1978; 25:154–168
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004172
Loading
/content/journal/ijsem/10.1099/ijsem.0.004172
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error