sp. nov., an endophytic actinomycete isolated from the root of in Thailand Free

Abstract

An endophytic actinomycete, strain 3MP-10, isolated from the root of was taxonomically studied based upon polyphasic approaches. This strain formed spiral spore chains on aerial mycelia. -Diaminopimelic acid, glucose and ribose were found in the whole-cell hydrolysates. It belonged to the genus and was closely related to DSM 42101 (98.9 %) and JCM 16909 (98.6 %) based on 16S rRNA gene sequence analysis results. The major menaquinones were MK-10(H), MK-10(H) and MK-9(H). The predominant cellular fatty acids were isoC, anteiso-C and anteisoC. The detected phospholipids were diphosphatidylglycerol, phosphatidylinositol mannoside, phosphatidylinositol, phosphatidylethanolamine and phosphatidylglycerol. Strain 3MP-10 had a genome size of 7.2 Mb with a genome G+C content of 73.4 mol%. Results of genome-based similarity analysis revealed ANIb values of 84.94 and 84.77 %, ANIm values of 88.01 and 87.92 %, and dDDH values of 29.9 and 29.6 % when compared with DSM 42101 and JCM 16909, respectively. Based on the polyphasic approach, digital DNA–DNA relatedness and average nucleotide identity, we propose that the novel actinomycete represents a novel species, , with type strain 3MP-10 (=JCM 33328=TISTR 2646).

Funding
This study was supported by the:
  • Royal Golden Jubilee (RGJ) Ph.D. Programme
    • Principle Award Recipient: Nattaporn Klykleung
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004170
2020-04-29
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3316.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004170&mimeType=html&fmt=ahah

References

  1. Waksman SA, Henrici AT. The nomenclature and classification of the actinomycetes. J Bacteriol 1943; 46:337–341 [View Article][PubMed][PubMed]
    [Google Scholar]
  2. Kämpfer P. Genus I. Streptomyces Waksman and Henrici 1943, 339AL emend. Witt and Stackebrandt 1990, 370 emend. Wellington, Stackebrandt, Sanders, Wolstrup and Jorgensen 1992, 159. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI et al. (editors) Bergey’s Manual of Systematic Bacteriology Part B 5, 2nd ed. NewYork: Springer; 2012 pp 1455–1767
    [Google Scholar]
  3. Bérdy J. Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 2012; 65:385–395 [View Article][PubMed][PubMed]
    [Google Scholar]
  4. Matsumoto A, Takahashi Y. Endophytic actinomycetes: promising source of novel bioactive compounds. J Antibiot 2017; 70:514–519 [View Article][PubMed][PubMed]
    [Google Scholar]
  5. Takahashi Y, Nakashima T. Actinomycetes, an inexhaustible source of naturally occurring antibiotics. Antibiotics 2018; 7:45 [View Article]
    [Google Scholar]
  6. Genilloud O. Actinomycetes: still a source of novel antibiotics. Nat Prod Rep 2017; 34:1203–1232 [View Article][PubMed][PubMed]
    [Google Scholar]
  7. Kaewkla O, Franco CMM. Streptomyces roietensis sp. nov., an endophytic actinobacterium isolated from the surface-sterilized stem of jasmine rice, Oryza sativa KDML 105. Int J Syst Evol Microbiol 2017; 67:4868–4872 [View Article][PubMed][PubMed]
    [Google Scholar]
  8. Li X, Lai X, Gan L, Long X, Hou Y et al. Streptomyces geranii sp. nov., a novel endophytic actinobacterium isolated from root of Geranium carolinianum L. Int J Syst Evol Microbiol 2018; 68:2562–2567 [View Article][PubMed][PubMed]
    [Google Scholar]
  9. Wang Z, Jiang B, Li X, Gan L, Long X et al. Streptomyces populi sp. nov., a novel endophytic actinobacterium isolated from stem of Populus adenopoda Maxim. Int J Syst Evol Microbiol 2018; 68:2568–2573 [View Article][PubMed][PubMed]
    [Google Scholar]
  10. Klykleung N, Tanasupawat S, Pittayakhajonwut P, Ohkuma M, Kudo T. Amycolatopsis stemonae sp. nov., isolated from a Thai medicinal plant. Int J Syst Evol Microbiol 2015; 65:3894–3899 [View Article][PubMed][PubMed]
    [Google Scholar]
  11. Itoh T, Kudo T, Parenti F, Seino A. Amended description of the genus Kineosporia, based on chemotaxonomic and morphological studies. Int J Syst Bacteriol 1989; 39:168–173 [View Article]
    [Google Scholar]
  12. Ara I, Kudo T. Three novel species of the genus Catellatospora, Catellatospora chokoriensis sp. nov., Catellatospora coxensis sp. nov. and Catellatospora bangladeshensis sp. nov., and transfer of Catellatospora citrea subsp. methionotrophica Asano and Kawamoto 1988 to Catellatospora methionotrophica sp. nov., comb. nov . Int J Syst Evol Microbiol 2006; 56:393–400 [View Article][PubMed][PubMed]
    [Google Scholar]
  13. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  14. Arai T. Culture Media for Actinomycetes Tokyo, Japan: The Society for Actinomycetes; 1975
    [Google Scholar]
  15. Waksman SA. The Actinomycetes. In: A Summary of Current Knowledge New York: Ronald; 1967
    [Google Scholar]
  16. Waksman SA. The Actinomycetes, Vol. 2, Classification, Identification and Descriptions of Genera and Species Baltimore: Williams and Wilkins; 1961
    [Google Scholar]
  17. Kelly KL. Inter-Society Color Council – National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  18. Williams ST, Cross T. Chapter XI actinomycetes. Methods Microbiol 1971; 4:295–334
    [Google Scholar]
  19. Qin S, Li J, Chen H-H, Zhao G-Z, Zhu W-Y et al. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 2009; 75:6176–6186 [View Article][PubMed][PubMed]
    [Google Scholar]
  20. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article][PubMed][PubMed]
    [Google Scholar]
  21. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  22. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed][PubMed]
    [Google Scholar]
  23. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  24. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  25. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp 115–148
    [Google Scholar]
  26. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed][PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed][PubMed]
    [Google Scholar]
  28. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  29. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed][PubMed]
    [Google Scholar]
  30. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed][PubMed]
    [Google Scholar]
  31. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed][PubMed]
    [Google Scholar]
  32. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed][PubMed]
    [Google Scholar]
  33. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article][PubMed][PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article][PubMed][PubMed]
    [Google Scholar]
  35. Lefort V, Desper R, Gascuel O. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol 2015; 32:2798–2800 [View Article][PubMed][PubMed]
    [Google Scholar]
  36. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed][PubMed]
    [Google Scholar]
  37. Aziz RK, Devoid S, Disz T, Edwards RA, Henry CS et al. Seed servers: high-performance access to the seed genomes, annotations, and metabolic models. PLoS One 2012; 7:e48053 [View Article][PubMed][PubMed]
    [Google Scholar]
  38. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  39. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed][PubMed]
    [Google Scholar]
  40. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed][PubMed]
    [Google Scholar]
  41. Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 1977; 5:249–260 [View Article]
    [Google Scholar]
  42. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed][PubMed]
    [Google Scholar]
  43. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004170
Loading
/content/journal/ijsem/10.1099/ijsem.0.004170
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed