1887

Abstract

The strain KG01 was isolated from a soil sample from King George Island, Antarctica. Cells of KG01 are rod-shaped and motile by means of multiple polar flagella. The absence of arginine dihydrolase activity could be a key feature to readily distinguish KG01 from its closest phylogenetic relative species. The main fatty acids of the strain include summed feature 3 (C ω7 and/or C iso 2-OH), C and C ω7. Phylogenetic analysis based on the 16S rRNA gene sequence and on a multilocus sequence analysis (MLSA) using housekeeping genes (16S rRNA) were carried out. These analyses allowed us to include the strain within the group, presenting the highest similarity of multilocus sequence with LMG 17761 (96.67 %). The genome of KG01 was sequenced and compared with genomes of the most closely related species of the scens group. The average nucleotide identity (ANIb) and average amino acid identity (AAI) values of the species phylogenetically closest to KG01 were less than 95–96 %, threshold currently accepted to define strain as belonging to a bacterial species, the highest scores being those to LMG 17761 (87.98 %) and ICMP 3553 (91.90 %). Therefore, the phenotypic and genotypic analyses results, allow us to propose that KG01 represents a member of a novel species of the genus , for which the name is proposed, and KG01 (=CECT 9084;=DSM 102036) is established as the type strain .

Funding
This study was supported by the:
  • Comisión Nacional de Investigación Científica y Tecnológica (Award PhD scolarship)
    • Principle Award Recipient: Soledad S Pavlov
  • INACH (Award DT_02_13)
    • Principle Award Recipient: Soledad S Pavlov
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004165
2020-04-24
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3255.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004165&mimeType=html&fmt=ahah

References

  1. Migula W. Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1894; 1:235–238
    [Google Scholar]
  2. Yang G, Han L, Wen J, Zhou S. Pseudomonas guangdongensis sp. nov., isolated from an electroactive biofilm, and emended description of the genus Pseudomonas Migula 1894. Int J Syst Evol Microbiol 2013; 63:4599–4605 [View Article][PubMed][PubMed]
    [Google Scholar]
  3. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010; 12:1513–1530 [View Article][PubMed][PubMed]
    [Google Scholar]
  4. Garrido-Sanz D, Meier-Kolthoff JP, Göker M, Martín M, Rivilla R et al. Genomic and genetic diversity within the Pseudomonas fluorescens complex. PLoS One 2016; 11:e0150183 [View Article][PubMed][PubMed]
    [Google Scholar]
  5. Palleroni NJ. The Pseudomonas story. Environ Microbiol 2010; 12:1377–1383 [View Article][PubMed][PubMed]
    [Google Scholar]
  6. Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 2017; 7:39 [View Article][PubMed][PubMed]
    [Google Scholar]
  7. Kriss AE, Mitskevich IN, Rozanova EP, Osnitskaia LK. [Microbiological studies of the Wanda Lake (Antarctica)]. Mikrobiologiia 1976; 45:1075–1081[PubMed][PubMed]
    [Google Scholar]
  8. Shivaji S, Rao NS, Saisree L, Sheth V, Reddy GS et al. Isolation and identification of Pseudomonas spp. from Schirmacher Oasis, Antarctica. Appl Environ Microbiol 1989; 55:767–770 [View Article][PubMed][PubMed]
    [Google Scholar]
  9. Reddy GSN, Matsumoto GI, Schumann P, Stackebrandt E, Shivaji S. Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. Int J Syst Evol Microbiol 2004; 54:713–719 [View Article][PubMed][PubMed]
    [Google Scholar]
  10. López NI, Pettinari MJ, Stackebrandt E, Tribelli PM, Põtter M et al. Pseudomonas extremaustralis sp. nov., a poly(3-hydroxybutyrate) producer isolated from an antarctic environment. Curr Microbiol 2009; 59:514–519 [View Article][PubMed][PubMed]
    [Google Scholar]
  11. Carrión O, Miñana-Galbis D, Montes MJ, Mercadé E. Pseudomonas deceptionensis sp. nov., a psychrotolerant bacterium from the Antarctic. Int J Syst Evol Microbiol 2011; 61:2401–2405 [View Article][PubMed][PubMed]
    [Google Scholar]
  12. Hwang CY, Zhang GI, Kang S-H, Kim HJ, Cho BC. Pseudomonas pelagia sp. nov., isolated from a culture of the Antarctic green alga Pyramimonas gelidicola . Int J Syst Evol Microbiol 2009; 59:3019–3024 [View Article][PubMed][PubMed]
    [Google Scholar]
  13. Kosina M, Černohlávková J, Barták M, Snopková K et al. Description of Pseudomonas gregormendelii sp. nov., a novel psychrotrophic bacterium from James Ross Island, Antarctica. Curr Microbiol 2016; 73:84–90 [View Article][PubMed][PubMed]
    [Google Scholar]
  14. Bozal N, Montes MJ, Mercadé E. Pseudomonas guineae sp. nov., a novel psychrotolerant bacterium from an Antarctic environment. Int J Syst Evol Microbiol 2007; 57:2609–2612 [View Article][PubMed][PubMed]
    [Google Scholar]
  15. Kosina M, Barták M, Mašlaňová I, Pascutti AV, Sedo O et al. Pseudomonas prosekii sp. nov., a novel psychrotrophic bacterium from Antarctica. Curr Microbiol 2013; 67:637–646 [View Article][PubMed][PubMed]
    [Google Scholar]
  16. See-Too WS, Salazar S, Ee R, Convey P, Chan K-G et al. Pseudomonas versuta sp. nov., isolated from Antarctic soil. Syst Appl Microbiol 2017; 40:191–198 [View Article][PubMed][PubMed]
    [Google Scholar]
  17. D'Amico S, Collins T, Marx J-C, Feller G, Gerday C et al. Psychrophilic microorganisms: challenges for life. EMBO Rep 2006; 7:385–389 [View Article][PubMed][PubMed]
    [Google Scholar]
  18. Alvarez-Ortega C, Wiegand I, Olivares J, Hancock REW, Martínez JL. Genetic determinants involved in the susceptibility of Pseudomonas aeruginosa to β-lactam antibiotics. Antimicrob Agents Chemother 2010; 54:4159–4167 [View Article][PubMed][PubMed]
    [Google Scholar]
  19. Schumann P, Maier T. MALDI–TOF mass spectrometry applied to classification and identification of bacteria. Methods in Microbiology 2014; 41:275–306
    [Google Scholar]
  20. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed][PubMed]
    [Google Scholar]
  21. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:16131617 [View Article][PubMed][PubMed]
    [Google Scholar]
  22. Bennasar A, Mulet M, Lalucat J, García-Valdés E. PseudoMLSA: a database for multigenic sequence analysis of Pseudomonas species. BMC Microbiol 2010; 10:118 [View Article][PubMed][PubMed]
    [Google Scholar]
  23. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed][PubMed]
    [Google Scholar]
  24. Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis. version 2; 2011; 75
  25. Vásquez-Ponce F, Higuera-Llantén S, Pavlov MS, Marshall SH, Olivares-Pacheco J. Phylogenetic MLSA and phenotypic analysis identification of three probable novel Pseudomonas species isolated on King George Island, South Shetland, Antarctica. Brazilian Journal of Microbiology 2018; 49:695–702 [View Article]
    [Google Scholar]
  26. Pavlov MS, Lira F, Martínez JL, Olivares J, Marshall SH. Draft genome sequence of Antarctic Pseudomonas sp. strain KG01 with full potential for biotechnological applications. Genome Announc 2015; 3:e00906–00915 [View Article][PubMed][PubMed]
    [Google Scholar]
  27. Langille MGI, Brinkman FSL. IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics 2009; 25:664–665 [View Article][PubMed][PubMed]
    [Google Scholar]
  28. Wu X, Monchy S, Taghavi S, Zhu W, Ramos J et al. Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida . FEMS Microbiol Rev 2011; 35:299–323 [View Article][PubMed][PubMed]
    [Google Scholar]
  29. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed][PubMed]
    [Google Scholar]
  30. Auch AF, Klenk H-P, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010; 2:142148 [View Article][PubMed][PubMed]
    [Google Scholar]
  31. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed][PubMed]
    [Google Scholar]
  32. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 2005; 102:2567–2572 [View Article][PubMed][PubMed]
    [Google Scholar]
  33. Elomari M, Coroler L, Izard D, Leclerc H. A numerical taxonomic study of fluorescent Pseudomonas strains isolated from natural mineral waters. J Appl Bacteriol 1995; 78:71–81 [View Article][PubMed][PubMed]
    [Google Scholar]
  34. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed][PubMed]
    [Google Scholar]
  35. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Epub ahead of print; 2016
  36. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article][PubMed][PubMed]
    [Google Scholar]
  37. Elomari M, Coroler L, Hoste B, Gillis M, Izard D et al. DNA relatedness among Pseudomonas strains isolated from natural mineral waters and proposal of Pseudomonas veronii sp. nov. Int J Syst Bacteriol 1996; 46:1138–1144 [View Article][PubMed][PubMed]
    [Google Scholar]
  38. Campos VL, Valenzuela C, Yarza P, Kämpfer P, Vidal R et al. Pseudomonas arsenicoxydans sp nov., an arsenite-oxidizing strain isolated from the Atacama desert. Syst Appl Microbiol 2010; 33:193–197 [View Article][PubMed][PubMed]
    [Google Scholar]
  39. Baïda N, Yazourh A, Singer E, Izard D. Pseudomonas grimontii sp. nov. Int J Syst Evol Microbiol 2002; 52:1497–1503 [View Article][PubMed][PubMed]
    [Google Scholar]
  40. Park Y-D, Lee HB, Yi H, Kim Y, Bae KS et al. Pseudomonas panacis sp. nov., isolated from the surface of rusty roots of Korean ginseng. Int J Syst Evol Microbiol 2005; 55:1721–1724 [View Article][PubMed][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004165
Loading
/content/journal/ijsem/10.1099/ijsem.0.004165
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error