1887

Abstract

Four strains (SYSU SYW-1, SYW-2, SYW-3 and XLW-1) were isolated from seawater near the shore in Guangdong Province, China. Cells were Gram-stain-negative, aerobic, non-motile and non-spore-forming. Growth was observed at a temperature range of 16–40 °C (optimum, 32 °C), a pH range of 4–8 (optimum, pH 7) and in the presence of up to 10 % (w/v) NaCl. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine and an unidentified phospholipid. The respiratory quinone was ubiquinone 8 (UQ-8), and the predominant fatty acids were C 3-OH, C, C and Cω9. Comparison of 16S rRNA gene and genome sequences confirmed that these strains represented a novel member of the genus , with less than 98.8 % 16S rRNA gene sequence similarity and less than 95 % genomic average nucleotide identity to recognized species. The phylogenetic tree based on 16S rRNA gene sequences and the protein-concatamer tree based on a concatenation of 28 protein marker sequences both indicated that the strains clustered with ‘’ TX07-7308 and ‘’ E95-16, but formed a distinct lineage group among the other members of the genus . The DNA G+C contents of the four strains were determined to be 32.9, 32.7, 32.9 and 32.9 %, respectively (genome). On the basis of phenotypic and genotypic features, the strains are considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SYSU SYW-1 (=CGMCC 1.17031=NBRC 113781).

Funding
This study was supported by the:
  • Liang-Hui Li , Guangdong Province Ordinary Universities Characteristic Innovation Project , (Award 2018KTSCX042)
  • Liang-Hui Li , Guangdong Province Science and Technology Planning Project , (Award 2017A020215068)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004164
2020-04-24
2020-06-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3264.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004164&mimeType=html&fmt=ahah

References

  1. Sjöstedt A-B. Family III. Francisellaceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed, vol. 2, The Proteobacteria New York: Springer; 2005 pp 199–200
    [Google Scholar]
  2. Hollis D-G, Weaver R-E, Steigerwalt A-G, Wenger J-D, Moss C-W et al. Francisella philomiragia comb. nov. (formerly Yersinia philomiragia) and Francisella tularensis biogroup novicida (formerly Francisella novicida) associated with human disease . J Clin Microbiol 1989; 27:1601–1608 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  3. Staples J-E, Kubota K-A, Chalcraft L-G, Mead P-S, Petersen J-M. Epidemiologic and molecular analysis of human tularemia, United States, 1964-2004. Emerg Infect Dis 2006; 12:1113–1121 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  4. Sjöstedt A. Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations. Ann N Y Acad Sci 2007; 1105:1–29 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  5. Matyas B-T, Nieder H-S, Telford S-R. Pneumonic tularemia on Martha's vineyard: clinical, epidemiologic, and ecological characteristics. Ann N Y Acad Sci 2007; 1105:351–377 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  6. Anda P, Segura del Pozo J, Díaz García J-M, Escudero R, García Peña F-J et al. Waterborne outbreak of tularemia associated with crayfish fishing. Emerg Infect Dis 2001; 7:575–582 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  7. Thelaus J, Andersson A, Mathisen P, Forslund A-L, Noppa L et al. Influence of nutrient status and grazing pressure on the fate of Francisella tularensis in lake water. FEMS Microbiol Ecol 2009; 67:69–80 [CrossRef]
    [Google Scholar]
  8. Kilic S, Birdsell D-N, Karagöz A, Çelebi B, Bakkaloglu Z et al. Water as source of Francisella tularensis infection in humans, Turkey. Emerg Infect Dis 2015; 21:2213–2216 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  9. Owen C-R, Buker E-O, Jellison W-L, Lackman D-B, Bell J-F. Comparative studies of Francisella tularensis and Francisella novicida . J Bacteriol 1964; 87:676–683 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  10. Wenger J-D, Hollis D-G, Weaver R-E, Baker C-N, Brown G-R et al. Infection caused by Francisella philomiragia (formerly Yersinia philomiragia). A newly recognized human pathogen. Ann Intern Med 1989; 110:888–892 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  11. Mikalsen J, Olsen A-B, Tengs T, Colquhoun D-J. Francisella philomiragia subsp. noatunensis subsp. nov., isolated from farmed Atlantic cod (Gadus morhua L.). Int J Syst Evol Microbiol 2007; 57:1960–1965 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  12. Ottem KF, Nylund A, Karlsbakk E, Friis-Møller A, Krossøy B et al. New species in the genus Francisella (Gammaproteobacteria; Francisellaceae); Francisella piscicida sp. nov. isolated from cod (Gadus morhua). Arch Microbiol 2007; 188:547–550 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  13. Mikalsen J, Colquhoun D-J. Francisella asiatica sp. nov. isolated from farmed tilapia (Oreochromis sp.) and elevation of Francisella philomiragia subsp. noatunensis to species rank as Francisella noatunensis comb. nov., sp. nov. Int J Syst Evol Microbiol 2009; 106:1231–1243 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  14. Ottem K-F, Nylund A, Karlsbakk E, Friis-Møller A, Kamaishi T. Elevation of Francisella philomiragia subsp. noatunensis Mikalsen et al. (2007) to Francisella noatunensis comb. nov. [syn. Francisella piscicida Ottem et al. (2008) syn. nov.] and characterization of Francisella noatunensis subsp. orientalis subsp. nov., two important fish pathogens. J Appl Microbiol 2009; 106:1231–1243 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  15. Brevik O-J, Ottem K-F, Kamaishi T, Watanabe K, Nylund A. Francisella halioticida sp. nov., a pathogen of farmed giant abalone (Haliotis gigantea) in Japan. J Appl Microbiol 2011; 111:1044–1056 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  16. Huber B, Escudero R, Busse H-J, Seibold E, Scholz H-C et al. Description of Francisella hispaniensis sp. nov., isolated from human blood, reclassification of Francisella novicida (Larson et al. 1955) Olsufiev et al. 1959 as Francisella tularensis subsp. novicida comb. nov. and emended description of the genus Francisella . Int J Syst Evol Microbiol 2010; 60:1887–1896 [CrossRef]
    [Google Scholar]
  17. Qu P-H, Chen S-Y, Scholz HC, Busse H-J, Gu Q et al. Francisella guangzhouensis sp. nov., isolated from air-conditioning systems. Int J Syst Evol Microbiol 2013; 63:3628–3635 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  18. Sjödin A, Ohrman C, Bäckman S, Lärkeryd A, Granberg M et al. Complete genome sequence of Francisella endociliophora strain FSC1006, isolated from a laboratory culture of the marine ciliate Euplotes raikovi. Genome Announc 2014; 2:e01227–14 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  19. Larson M-A, Nalbantoglu U, Sayood K, Zentz E-B, Cer R-Z et al. Reclassification of Wolbachia persica as Francisella persica comb. nov. and emended description of the family Francisellaceae . Int J Syst Evol Microbiol 2016; 66:1200–1205
    [Google Scholar]
  20. Challacombe J-F, Petersen J-M, Gallegos-Graves L V, Hodge D, Pillai S et al. Whole genome relationships among Francisella bacteria of diverse origin define new species and provide specific regions for detection. Appl Environ Microbiol 2016; 83:e02589–16
    [Google Scholar]
  21. Vallesi A, Sjödin A, Petrelli D, Luporini P, Taddei AR et al. A new species of the γ-proteobacterium Francisella, F. adeliensis sp. nov., endocytobiont in an antarctic marine ciliate and potential evolutionary forerunner of pathogenic species. Microb Ecol 2019; 77:587–596 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  22. Qu P-H, Li Y, Salam N, Chen S-Y, Liu L et al. Allofrancisella inopinata gen. nov., sp. nov. and Allofrancisella frigidaquae sp. nov., isolated from water-cooling systems, and transfer of Francisella guangzhouensis Qu et al. 2013 to the new genus as Allofrancisella guangzhouensis comb. nov. Int J Syst Evol Microbiol 2016; 66:4832–4838 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  23. Zheng M-L, Jiao J-Y, Dong L, Han M-X, Li L-H et al. Pseudofrancisella aestuarii gen. nov., sp. nov., a novel member of the family Francisellaceae isolated from estuarine seawater. Antonie Van Leeuwenhoek 2019; 112:877–886 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  24. Soto E, Griffin M-J, Morales J-A, Calvo E-B, de Alexandre Sebastião F et al. Francisella marina sp. nov., Etiologic agent of systemic disease in cultured spotted Rose Snapper (Lutjanus guttatus) in Central America. Appl Environ Microbiol 2018; 84:AEM.00144–18 [CrossRef]
    [Google Scholar]
  25. Tindall B-J. Clarifying the limitations on rule 18A and rule 30 of the International Code of Nomenclature of prokaryotes. Int J Syst Evol Microbiol 2017; 67:505–506 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  26. Qu P, Deng X, Zhang J, Chen J, Zhang J et al. [Identification and characterization of the Francisella sp. strain 08HL01032 isolated in air condition systems]. Wei Sheng Wu Xue Bao 2009; 49:1003–1010[PubMed][PubMed]
    [Google Scholar]
  27. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 2007; 57:1424–1428 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  28. Liu L, Salam N, Jiao J-Y, Jiang H-C, Zhou E-M et al. Diversity of culturable thermophilic actinobacteria in hot springs in Tengchong, China and studies of their biosynthetic gene profiles. Microb Ecol 2016; 72:150–162 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  29. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  30. Altschul S-F, Madden T-L, Schäffer A-A, Zhang J, Zhang Z et al. Gapped blast and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  31. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  32. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  33. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  34. Fitch W-M. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  35. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  36. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 2004; 101:11030–11035 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  37. Takahashi K, Nei M. Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Mol Biol Evol 2000; 17:1251–1258 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  38. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  39. Parks DH, Imelfort M, Skennerton C-T, Hugenholtz P, Tyson G-W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  40. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  41. Wu M, Scott A-J. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 2012; 28:1033–1034 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  42. Edgar R-C. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  43. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  44. Letunic I, Bork P. Interactive tree of life (iTOL) V3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 2016; 44:W242–W245 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  45. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  46. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013; 14:913 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  47. Seibold E, Maier T, Kostrzewa M, Zeman E, Splettstoesser W. Identification of Francisella tularensis by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry: fast, reliable, robust, and cost-effective differentiation on species and subspecies levels. J Clin Microbiol 2010; 48:1061–1069 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  48. Xu P, Li W-J, Tang S-K, Zhang Y-Q, Chen G-Z et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  49. Liu L, Zhou E-M, Jiao J-Y, Manikprabhu D, Ming H et al. Hymenobacter mucosus sp. nov., isolated from a karst cave soil sample. Int J Syst Evol Microbiol 2015; 65:4121–4127 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  50. Aslanzadeh J. Biochemical profile-based microbial identification systems [M]. In Tang YW, Stratton CW. (editors) Advanced Techniques in Diagnostic Microbiology New York: Springer;
    [Google Scholar]
  51. Collins M-D, Pirouz T, Goodfellow M, Minnikin D-E. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  52. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [CrossRef]
    [Google Scholar]
  53. Minnikin D-E, Collins M-D, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 2008; 47:87–95 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004164
Loading
/content/journal/ijsem/10.1099/ijsem.0.004164
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error