1887

Abstract

A novel Gram-negative, non-spore-forming, vibrio-shaped, anaerobic, alkaliphilic, sulfate-reducing bacterium, designated strain PAR22N, was isolated from sediment samples collected at an alkaline crater lake in Guanajuato (Mexico). Strain PAR22N grew at temperatures between 15 and 37 °C (optimum, 32 °C), at pH between pH 8.3 and 10.1 (optimum, pH 9.0–9.6), and in the presence of NaCl up to 10 %. Pyruvate, 2-methylbutyrate and fatty acids (4–18 carbon atoms) were used as electron donors in the presence of sulfate as a terminal electron acceptor and were incompletely oxidized to acetate and CO. Besides sulfate, both sulfite and elemental sulfur were also used as terminal electron acceptors and were reduced to sulfide. The predominant fatty acids were summed feature 10 (C ω7 and/or C ω9 and/or C ω12), C ω9 and C. The genome size of strain PAR22N was 3.8 Mb including 3391 predicted genes. The genomic DNA G+C content was 49.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that it belongs to the genus within the class . Its closest phylogenetic relatives are (98.4 % similarity) and (97.9 % similarity). Based on phylogenetic, phenotypic and chemotaxonomic characteristics, we propose that the isolate represents a novel species of the genus with the name sp. nov. The type strain is PAR22N (=DSM 105758=JCM 32146).

Funding
This study was supported by the:
  • CoNACyt
    • Principle Award Recipient: Maria Fernanda Pérez-Bernal
  • ANR
    • Principle Award Recipient: Not Applicable
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004159
2020-04-09
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3219.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004159&mimeType=html&fmt=ahah

References

  1. Foti M, Sorokin DY, Lomans B, Mussman M, Zacharova EE et al. Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl Environ Microbiol 2007; 73:2093–2100 [View Article][PubMed][PubMed]
    [Google Scholar]
  2. Sorokin DY, Kuenen JG, Muyzer G. The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Front Microbiol 2011; 2:article 44 [View Article][PubMed][PubMed]
    [Google Scholar]
  3. Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD et al. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 2014; 18:791–809 [View Article][PubMed][PubMed]
    [Google Scholar]
  4. Sorokin DY, Tourova TP, Panteleeva AN, Muyzer G. Desulfonatronobacter acidivorans gen. nov., sp. nov. and Desulfobulbus alkaliphilus sp. nov., haloalkaliphilic heterotrophic sulfate-reducing bacteria from soda lakes. Int J Syst Evol Microbiol 2012; 62:2107–2113 [View Article][PubMed][PubMed]
    [Google Scholar]
  5. Sorokin DY, Chernyh NA. 'Candidatus Desulfonatronobulbus propionicus': a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes. Extremophiles 2016; 20:895–901 [View Article][PubMed][PubMed]
    [Google Scholar]
  6. Kuever J, Rainey FA, Widdel F. Desulfobotulus gen. nov. In Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J et al. (editors) Bergey’s Manual of Systematic of Archaea and Bacteria 2015
    [Google Scholar]
  7. Kuever J, Rainey FA, Widdel F. Genus IV Desulfobotulus gen. nov. In Brenner DJ, Kreig NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed, vol. 2 (The Proteobacteria, part C The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer; 2005 pp 970–971
    [Google Scholar]
  8. Sorokin DY, Detkova EN, Muyzer G. Propionate and butyrate dependent bacterial sulfate reduction at extremely haloalkaline conditions and description of Desulfobotulus alkaliphilus sp. nov. Extremophiles 2010; 14:71–77 [View Article][PubMed][PubMed]
    [Google Scholar]
  9. Pérez Bernal MF, Souza Brito EM, Bartoli M, Aubé J, Fardeau M-L et al. Desulfonatronum parangueonense sp. nov., a sulfate-reducing bacterium isolated from sediment of an alkaline crater lake. Int J Syst Evol Microbiol 2017; 67:4999–5005 [View Article][PubMed][PubMed]
    [Google Scholar]
  10. Widdel F, Pfennig N. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 1981; 129:395–400 [View Article][PubMed][PubMed]
    [Google Scholar]
  11. Pfennig N, Trüper HG. The family Chromatiaceae . In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH. (editors) The Prokaryotes New York: Springer; 1992 pp 3200–3221
    [Google Scholar]
  12. Hungate RE. A roll tube method for cultivation of strict anaerobes. Methods Microbiol 1969; 3B:117–132
    [Google Scholar]
  13. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed][PubMed]
    [Google Scholar]
  14. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed][PubMed]
    [Google Scholar]
  15. Marteinsson VT, Watrin L, Prieur D, Caprais JC, Raguénès G et al. Phenotypic characterization, DNA similarities, and protein profiles of twenty sulfur-metabolizing hyperthermophilic anaerobic Archaea isolated from hydrothermal vents in the Southwestern Pacific Ocean. Int J Syst Bacteriol 1995; 45:623–632 [View Article]
    [Google Scholar]
  16. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. Ncbi prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed][PubMed]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K, Dudley J. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed][PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed][PubMed]
    [Google Scholar]
  19. Felsenstein J. Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol 1996; 266:418–427 [View Article][PubMed][PubMed]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed][PubMed]
    [Google Scholar]
  21. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed][PubMed]
    [Google Scholar]
  22. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4:184–192 [View Article][PubMed][PubMed]
    [Google Scholar]
  23. Cord-Ruwisch R. A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 1985; 4:33–36 [View Article]
    [Google Scholar]
  24. Cline JD. Spectrophotometric determination of hydrogen sulfide in natural WATERS1. Limnol Oceanogr 1969; 14:454–458 [View Article]
    [Google Scholar]
  25. Miller LT. A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol 1982; 16:584–586
    [Google Scholar]
  26. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  27. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  28. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  29. Postgate JR. Cytochrome c3 and desulphoviridin; pigments of the anaerobe Desulphovibrio desulphuricans . J Gen Microbiol 1956; 14:545–572 [View Article][PubMed][PubMed]
    [Google Scholar]
  30. Normand P, Caumette P, Goulas P, Pujic P, Wisniewski-Dyé F. Adaptation of Prokaryotes to their biotopes and to physicochemical conditions in natural or anthropized environments. In Bertrand JC, Caumette P, Lebaron P, Matheron R, Normand P et al. (editors) Environmental Microbiology: Fundamentals and Applications Dordrecht: Springer; 2014 pp 293–351
    [Google Scholar]
  31. Rabus R, Hansen T, Widdel F. Dissimilatory sulfate- and sulfur-reducing prokaryotes. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes: Prokaryotic Physiology and Biochemistry Berlin, Heidelberg: Springer Berlin Heidelberg; 2013 pp 309-–3404
    [Google Scholar]
  32. Sorokin DY, Chernyh NA, Poroshina MN. Desulfonatronobacter acetoxydans sp. nov.,: a first acetate-oxidizing, extremely salt-tolerant alkaliphilic SRB from a hypersaline soda lake. Extremophiles 2015; 19:899–907 [View Article][PubMed][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004159
Loading
/content/journal/ijsem/10.1099/ijsem.0.004159
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error