1887

Abstract

Minutes of the closed meeting of the ICSP Subcommittee on the Taxonomy of Rhizobia and Agrobacteria held by videoconference on 17 July 2019, and list of recent species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004157
2020-04-28
2020-06-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3563.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004157&mimeType=html&fmt=ahah

References

  1. de Lajudie P, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of rhizobia and Agrobacteria minutes of the meeting by video Conference, 11 July 2018. Int J Syst Evol Microbiol 2019; 69:1835–1840 [CrossRef]
    [Google Scholar]
  2. de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E et al. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 2019; 69:1852–1863 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  3. Whitman WB. Genome sequences as the type material for taxonomic descriptions of prokaryotes. Syst Appl Microbiol 2015; 38:217–222 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  4. Tindall BJ. Comments on minutes of the Subcommittee on the Taxonomy of Chlamydiae and the Subcommittee on the Taxonomy of Rhizobia and Agrobacteria. Int J Syst Evol Microbiol 2019; 69:2599–2601 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  5. de Lajudie PM, Young JPW. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of rhizobia and agrobacteria minutes of the closed meeting, Granada, 4 September 2017. Int J Syst Evol Microbiol 2018; 68:3363–3368 [CrossRef]
    [Google Scholar]
  6. Wu L, Ma J. The global Catalogue of microorganisms (GCM) 10K type strain sequencing project: providing services to taxonomists for standard genome sequencing and annotation. Int J Syst Evol Microbiol 2019; 69:895–898 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  7. Wu L, McCluskey K, Desmeth P, Liu S, Hideaki S et al. The global Catalogue of microorganisms 10K type strain sequencing project: closing the genomic gaps for the validly published prokaryotic and fungi species. Gigascience 2018; 7:giy026 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  8. Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of prokaryotes: prokaryotic code (2008 revision). Int J Syst Evol Microbiol 2019; 69:S1–S111
    [Google Scholar]
  9. Whitman WB, Bull CT, Busse H-J, Fournier P-E, Oren A et al. Request for revision of the statutes of the International Committee on Systematics of prokaryotes. Int J Syst Evol Microbiol 2019; 69:584–593 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  10. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2019; 69:1247–1250 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  11. Lin S-Y, Hameed A, Huang H-I, Young C-C. Allorhizobium terrae sp. nov., isolated from paddy soil, and reclassification of Rhizobium oryziradicis (Zhao et al. 2017) as Allorhizobium oryziradicis comb. nov. Int J Syst Evol Microbiol 2020; 70:397–405 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  12. Sazanova AL, Safronova VI, Kuznetsova IG, Karlov DS, Belimov AA et al. Bosea caraganae sp. nov. a new species of slow-growing bacteria isolated from root nodules of the relict species Caragana jubata (Pall.) Poir. originating from Mongolia. Int J Syst Evol Microbiol 2019; 69:2687–2695 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  13. Bromfield ESP, Cloutier S, Nguyen HDT. Description and complete genome sequence of Bradyrhizobium amphicarpaeae sp. nov., harbouring photosystem and nitrogen-fixation genes. Int J Syst Evol Microbiol 2019; 69:2841–2848 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  14. Urquiaga MCdeO, Klepa MS, Somasegaran P, Ribeiro RA, Delamuta JRM et al. Bradyrhizobium frederickii sp. nov., a nitrogen-fixing lineage isolated from nodules of the caesalpinioid species Chamaecrista fasciculata and characterized by tolerance to high temperature in vitro . Int J Syst Evol Microbiol 2019; 69:3863–3877 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  15. Li YH, Wang R, Sui XH, Wang ET, Zhang XX et al. Bradyrhizobium nanningense sp. nov., Bradyrhizobium guangzhouense sp. nov. and Bradyrhizobium zhanjiangense sp. nov., isolated from effective nodules of peanut in Southeast China. Syst Appl Microbiol 2019; 42:126002 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  16. Fossou RK, Pothier JF, Zézé A, Perret X. Bradyrhizobium ivorense sp. nov. as a potential local bioinoculant for Cajanus cajan cultures in Côte d'Ivoire. Int J Syst Evol Microbiol 2020; 70:1421–1430 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  17. Klepa MS, Urquiaga MCdeO, Somasegaran P, Delamuta JRM, Ribeiro RA et al. Bradyrhizobium niftali sp. nov., an effective nitrogen-fixing symbiont of partridge pea [Chamaecrista fasciculata (Michx.) Greene], a native caesalpinioid legume broadly distributed in the USA. Int J Syst Evol Microbiol 2019; 69:3448–3459 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  18. Bromfield ESP, Cloutier S, Nguyen HDT. Description and complete genome sequences of Bradyrhizobium symbiodeficiens sp. nov., a non-symbiotic bacterium associated with legumes native to Canada. Int J Syst Evol Microbiol 2020; 70:442–449 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  19. Cabral Michel D, Azarias Guimarães A, Martins da Costa E, Soares de Carvalho T, Balsanelli E et al. Bradyrhizobium uaiense sp. nov., a new highly efficient cowpea symbiont. Arch Microbiol 2020 15 Feb 2020 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  20. Feng T, Kim KH, Oh J, Jeon CO. Cupriavidus lacunae sp. nov., isolated from pond-side soil. Antonie van Leeuwenhoek 2019; 112:543–551 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  21. Quan X-T, Siddiqi MZ, Liu Q-Z, Lee S-M, W-T I. Devosia ginsengisoli sp. nov., isolated from ginseng cultivation soil. Int J Syst Evol Microbiol 2020
    [Google Scholar]
  22. Lin D, Huang Y, Chen Y, Zhu S, Yang J et al. Devosia indica sp. nov., isolated from surface seawater in the Indian Ocean. Int J Syst Evol Microbiol 2020; 70:340–345 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  23. Chen Y, Zhu S, Lin D, Wang X, Yang J et al. Devosia naphthalenivorans sp. nov., isolated from East Pacific Ocean sediment. Int J Syst Evol Microbiol 2019; 69:1974–1979 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  24. Rocha G, Le Queré A, Medina A, Cuéllar A, Contreras J-L et al. Diversity and phenotypic analyses of salt- and heat-tolerant wild bean Phaseolus filiformis rhizobia native of a sand beach in Baja California and description of Ensifer aridi sp. nov. Arch Microbiol 2020; 202:309–322 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  25. Ferraz Helene LC, Dall'Agnol RF, Delamuta JRM, Hungria M. Mesorhizobium atlanticum sp. nov., a new nitrogen-fixing species from soils of the Brazilian Atlantic Forest biome. Int J Syst Evol Microbiol 2019; 69:1800–1806 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  26. Li J, Xin W, Xu Z-Z, Xiang F-Q, Zhang J-J et al. Mesorhizobium carbonis sp. nov., isolated from coal bed water. Antonie van Leeuwenhoek 2019; 112:1221–1229 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  27. De Meyer SE, Andrews M, James EK, Willems A. Mesorhizobium carmichaelinearum sp. nov., isolated from Carmichaelineae spp. root nodules. Int J Syst Evol Microbiol 2019; 69:146–152 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  28. Lin S-Y, Hameed A, Hsieh Y-T, Young C-C. Mesorhizobium composti sp. nov., isolated from compost. Antonie van Leeuwenhoek 2019; 112:1387–1398 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  29. Siddiqi MZ, Thao NTP, Choi G, Kim D-C, Lee Y-W et al. Mesorhizobium denitrificans sp. nov., a novel denitrifying bacterium isolated from sludge. J Microbiol 2019; 57:238–242 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  30. Siddiqi MZ, Shah S, Choi KD, Lee SY, Kim SY et al. Mesorhizobium hankyongi sp. nov. Isolated from Soil of Ginseng Cultivating Field. Curr Microbiol 2018; 75:1453–1459 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  31. Estrella MJ, Fontana MF, Cumpa Velásquez LM, Torres Tejerizo GA, Diambra L, Velásquez LMC, Tejerizo GAT et al. Mesorhizobium intechi sp. nov. isolated from nodules of Lotus tenuis in soils of the Flooding Pampa, Argentina. Syst Appl Microbiol 2020; 43:126044 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  32. Kabdullayeva T, Crosbie DB, Marín M. Mesorhizobium norvegicum sp. nov., a rhizobium isolated from a Lotus corniculatus root nodule in Norway. Int J Syst Evol Microbiol 2020; 70:388–396 [CrossRef]
    [Google Scholar]
  33. Jia LJ, Zhang KS, Tang K, Meng JY, Zheng C et al. Methylobacterium crusticola sp. nov., isolated from biological soil crusts. Int J Syst Evol Microbiol 2020; 70:20892095 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  34. Chen W-M, Cai C-Y, Li Z-H, Young C-C, Sheu S-Y. Methylobacterium oryzihabitans sp. nov., isolated from water sampled from a rice paddy field. Int J Syst Evol Microbiol 2019; 69:3843–3850 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  35. Ten LN, Li W, Elderiny NS, Kim MK, Lee S-Y et al. Methylobacterium segetis sp. nov., a novel member of the family Methylobacteriaceae isolated from soil on Jeju Island. Arch Microbiol 20191–8 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  36. Kim J, Chhetri G, Kim I, Kim H, Kim MK et al. Methylobacterium terrae sp. nov., a radiation-resistant bacterium isolated from gamma ray-irradiated soil. J Microbiol 2019; 57:959–966 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  37. Kim J, Chhetri G, Kim I, Kim H, Kim MK et al. Erratum to: Methylobacterium terrae sp. nov., a radiation-resistant bacterium isolated from gamma ray-irradiated soil. J Microbiol 2020; 58:79 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  38. Kim J, Chhetri G, Kim I, Lee B, Jang W et al. Methylobacterium terricola sp. nov., a gamma radiation-resistant bacterium isolated from gamma ray-irradiated soil. Int J Syst Evol Microbiol 2020 25 Feb 2020 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  39. Wang F, Yang L, Deng J, Liu X, Lu Y et al. Microvirga calopogonii sp. nov., a novel alphaproteobacterium isolated from a root nodule of Calopogonium mucunoides in Southwest China. Antonie van Leeuwenhoek 2019; 112:1593–1602 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  40. Msaddak A, Rejili M, Durán D, Mars M, Palacios JM et al. Microvirga tunisiensis sp. nov., a root nodule symbiotic bacterium isolated from Lupinus micranthus and L. luteus grown in Northern Tunisia. Syst Appl Microbiol 2019; 42:126015 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  41. Krzyżanowska DM, Maciąg T, Ossowicki A, Rajewska M, Kaczyński Z et al. Ochrobactrum quorumnocens sp. nov., a quorum quenching bacterium from the potato rhizosphere, and comparative genome analysis with related type strains. PLoS One 2019; 14:e0210874 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  42. Choi G-M, Kim KM, Yun C-S, Lee SY, Kim SY et al. Ochrobactrum soli sp. nov., Isolated from a Korean Cattle Farm. Curr Microbiol 20201–7
    [Google Scholar]
  43. Hu M, Li X, Li Z, Liu B, Yang Z et al. Ochrobactrum teleogrylli sp. nov., a pesticide-degrading bacterium isolated from the insect Teleogryllus occipitalis living in deserted cropland. Int J Syst Evol Microbiol 2020; 9: [CrossRef][PubMed][PubMed]
    [Google Scholar]
  44. Lee Y, Jeon CO. Paraburkholderia aromaticivorans sp. nov., an aromatic hydrocarbon-degrading bacterium, isolated from gasoline-contaminated soil. Int J Syst Evol Microbiol 2018; 68:1251–1257 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  45. Choi G-M, Im W-T. Paraburkholderia azotifigens sp. nov., a nitrogen-fixing bacterium isolated from paddy soil. Int J Syst Evol Microbiol 2018; 68:310–316 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  46. Gao Z-H, Zhong S-F, Lu Z-E, Xiao S-Y, Qiu L-H. Paraburkholderia caseinilytica sp. nov., isolated from the pine and broad-leaf mixed forest soil. Int J Syst Evol Microbiol 2018; 68:1963–1968 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  47. Fu J-C, Lv Y-Y, You J, Gao Z-H, Wang B-F et al. Paraburkholderia dinghuensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2019; 69:1613–1620 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  48. Jung M-Y, Kang M-S, Lee K-E, Lee E-Y, Park S-J. Paraburkholderia dokdonella sp. nov., isolated from a plant from the genus Campanula . J Microbiol 2019; 57:107–112 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  49. Trinh NH, Kim J. Paraburkholderia flava sp. nov., isolated from cool temperate forest soil. Int J Syst Evol Microbiol 2020; 39: [CrossRef][PubMed][PubMed]
    [Google Scholar]
  50. Paulitsch F, Dall'Agnol RF, Delamuta JRM, Ribeiro RA, da Silva Batista JS et al. Paraburkholderia guartelaensis sp. nov., a nitrogen-fixing species isolated from nodules of Mimosa gymnas in an ecotone considered as a hotspot of biodiversity in Brazil. Arch Microbiol 2019; 201:1435–1446 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  51. Feng T, Jeong SE, Lim JJ, Hyun S, Jeon CO. Paraburkholderia lacunae sp. nov., isolated from soil near an artificial pond. J Microbiol 2019; 57:232–237 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  52. Wilhelm RC, Murphy SJL, Feriancek NM, Karasz DC, DeRito CM et al. Paraburkholderia madseniana sp. nov., a phenolic acid-degrading bacterium isolated from acidic forest soil. Int J Syst Evol Microbiol 2020; 70:21372146 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  53. Xiao S-Y, Gao Z-H, Lin Q-H, Qiu L-H. Paraburkholderia pallida sp. nov. and Paraburkholderia silviterrae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2019; 69:3777–3785 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  54. Huo Y, Kang J-P, Kim Y-J, Yang D-C. Paraburkholderia panacihumi sp. nov., an isolate from ginseng-cultivated soil, is antagonistic against root rot fungal pathogen. Arch Microbiol 2018; 200:1151–1158 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  55. Gao Z-H, Ruan S-L, Huang Y-X, Lv Y-Y, Qiu L-H. Paraburkholderia phosphatilytica sp. nov., a phosphate-solubilizing bacterium isolated from forest soil. Int J Syst Evol Microbiol 2019; 69:196–202 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  56. Beukes CW, Steenkamp ET, van Zyl E, Avontuur J, Chan WY et al. Paraburkholderia strydomiana sp. nov. and Paraburkholderia steynii sp. nov.: rhizobial symbionts of the fynbos legume Hypocalyptus sophoroides . Antonie van Leeuwenhoek 2019; 112:1369–1385 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  57. Beukes CW, Venter SN, Law IJ, Phalane FL, Steenkamp ET. South African papilionoid legumes are nodulated by diverse Burkholderia with unique nodulation and nitrogen-fixation loci. PLoS One 2013; 8:e68406 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  58. Xiao S-Y, Gao Z-H, Yang Z, Bi J-Y, Qiu L-H. Paraburkholderia telluris sp. nov., isolated from subtropical forest soil. Int J Syst Evol Microbiol 2019; 69:1274–1280 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  59. Kimes NE, López-Pérez M, Flores-Félix JD, Ramírez-Bahena M-H, Igual JM et al. Pseudorhizobium pelagicum gen. nov., sp. nov. isolated from a pelagic Mediterranean zone. Syst Appl Microbiol 2015; 38:293–299 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  60. Lassalle F, Dastgheib SM, Zhao F-J, Zhang J, Verbarg S et al. Phylogenomic analysis reveals the basis of adaptation of Pseudorhizobium species to extreme environments. BioRxiv 2019; 690347:
    [Google Scholar]
  61. Hang P, Zhang L, Zhou X-Y, Hu Q, Jiang J-D. Rhizobium album sp. nov., isolated from a propanil-contaminated soil. Antonie van Leeuwenhoek 2019; 112:319–327 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  62. Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2019; 69:597–599 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  63. Máthé I, Tóth E, Mentes A, Szabó A, Márialigeti K et al. A new Rhizobium species isolated from the water of a crater lake, description of Rhizobium aquaticum sp. nov. Antonie van Leeuwenhoek 2018; 111:2175–2183 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  64. Huo Y, Tong W, Wang J, Wang F, Bai W et al. Rhizobium chutanense sp. nov., isolated from root nodules of Phaseolus vulgaris in China. Int J Syst Evol Microbiol 2019; 69:2049–2056 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  65. Liu L, Liang L, Xu L, Chi M, Zhang X et al. Rhizobium deserti sp. nov isolated from biological soil crusts collected at mu us sandy land, China. Curr Microbiol 2020; 77:327–333 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  66. Wang C, Li A, Yuan T, Bao G, Feng G et al. Rhizobium glycinendophyticum sp. nov., isolated from roots of Glycine max (Linn. Merr.). Antonie van Leeuwenhoek 2020; 113:147–154 [CrossRef][PubMed][PubMed]
    [Google Scholar]
  67. Kang J-P, Huo Y, Kim Y-J, Ahn J-C, Hurh J et al. Rhizobium panacihumi sp. nov., an isolate from ginseng-cultivated soil, as a potential plant growth promoting bacterium. Arch Microbiol 2019; 201:99–105 [CrossRef][PubMed][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004157
Loading
/content/journal/ijsem/10.1099/ijsem.0.004157
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error