1887

Abstract

Two Gram-stain-negative, aerobic, non-motile bacteria, designated IMCC1753 and IMCC26285, were isolated from a shallow eutrophic pond and a deep oligotrophic lake, respectively. Results of 16S rRNA gene sequence analysis indicated that the two strains shared 99.8 % sequence similarity and were most closely related to JC216(98.7–98.8 %). The whole genome sequences of strains IMCC1753 and IMCC26285 were 3.5 and 2.9 Mbp in size with 56.6 and 55.5 mol% DNA G+C content, respectively. Average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between the two strains were 82.2 and 25.8 %, respectively, indicating that they are separate species. The two strains showed ≤98.8 % 16S rRNA gene sequence similarities and ≤82.2 % ANI and ≤28.7 % dDDH values to closely related species of the genus , indicating that the two strains each represent novel species. Major fatty acid constituents of strain IMCC1753 were C 6, C 8 and summed features 3 (C 6 and/or C 7) and 8 (C 6 and/or C 7); those of strain IMCC26285 were summed features 3 and 8. The predominant isoprenoid quinone detected in both strains was ubiquinone-10 and the most abundant polyamine was spermidine. Both strains contained phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol and sphingoglycolipid as major polar lipids. On the basis of the phylogenetic and phenotypic characteristics, strains IMCC1753 and IMCC26285 were considered to represent two distinct novel species in the genus , for which the names (IMCC1753=KCTC 52480=KACC 18985=NBRC 112442) and (IMCC26285=KCTC 52479=KACC 18986=NBRC 112454) are proposed, respectively.

Funding
This study was supported by the:
  • Inha University (KR)
    • Principle Award Recipient: Jang-Cheon Cho
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004155
2020-04-22
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3202.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004155&mimeType=html&fmt=ahah

References

  1. Kosako Y, Yabuuchi E, Naka T, Fujiwara N, Kobayashi K. Proposal of Sphingomonadaceae fam. nov., consisting of Sphingomonas Yabuuchi et al. 1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov et al. 1994, Porphyrobacter Fuerst et al. 1993, Zymomonas Kluyver and van Niel 1936, and Sandaracinobacter Yurkov et al. 1997, with the type genus Sphingomonas Yabuuchi et al. 1990. Microbiol Immunol 2000; 44:563–575 [View Article][PubMed][PubMed]
    [Google Scholar]
  2. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 2011; 75:14–49 [View Article][PubMed][PubMed]
    [Google Scholar]
  3. Glaeser SP, Kämpfer P. The family Sphingomonadaceae . In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes: Alphaproteobacteria and Betaproteobacteria Berlin, Heidelberg: Springer; 2014 pp 641–707
    [Google Scholar]
  4. Gich F, Schubert K, Bruns A, Hoffelner H, Overmann J. Specific detection, isolation, and characterization of selected, previously uncultured members of the freshwater bacterioplankton community. Appl Environ Microbiol 2005; 71:5908–5919 [View Article][PubMed][PubMed]
    [Google Scholar]
  5. de Vries HJ, Beyer F, Jarzembowska M, Lipińska J, van den Brink P et al. Isolation and characterization of Sphingomonadaceae from fouled membranes. NPJ Biofilms Microbiomes 2019; 5:6 [View Article][PubMed][PubMed]
    [Google Scholar]
  6. Kato S, Ohkuma M, Yamagishi A. Intra-field variation of prokaryotic communities on and below the seafloor in the back-arc hydrothermal system of the Southern Mariana Trough. In Ishibashi J, Okino K, Sunamura M. (editors) Subseafloor Biosphere Linked to Hydrothermal Systems Tokyo: Springer; 2015 pp 301–311
    [Google Scholar]
  7. Zielińska S, Radkowski P, Ossowski T, Ludwig-Gałęzowska A, Łoś JM et al. First insight into microbial community composition in a phosphogypsum waste heap soil. Acta Biochim Pol 2017; 64:693–698 [View Article][PubMed][PubMed]
    [Google Scholar]
  8. Humphrey PT, Whiteman NK. Insect herbivory reshapes a native leaf microbiome. bioRxiv 2019; 620716:
    [Google Scholar]
  9. Jogler M, Chen H, Simon J, Rohde M, Busse H-J et al. Description of Sphingorhabdus planktonica gen. nov., sp. nov. and reclassification of three related members of the genus Sphingopyxis in the genus Sphingorhabdus gen. nov. Int J Syst Evol Microbiol 2013; 63:1342–1349 [View Article][PubMed][PubMed]
    [Google Scholar]
  10. Feng G-D, Zhang X-J, Yang S-Z, Li A-Z, Yao Q et al. Transfer of Sphingorhabdus marina, Sphingorhabdus litoris, Sphingorhabdus flavimaris and Sphingorhabdus pacifica corrig. into the novel genus Parasphingorhabdus gen. nov. and Sphingopyxis baekryungensis into the novel genus Novosphingopyxis gen. nov. within the family Sphingomonadaceae . Int J Syst Evol Microbiol 2020; 2002: [View Article][PubMed][PubMed]
    [Google Scholar]
  11. Chen H, Piao A-L, Tan X, Nogi Y, Yeo J et al. Sphingorhabdus buctiana sp. nov., isolated from fresh water, and reclassification of Sphingopyxis contaminans as Sphingorhabdus contaminans comb. nov. Antonie Van Leeuwenhoek 2018; 111:323–331 [View Article][PubMed][PubMed]
    [Google Scholar]
  12. Jung G-Y, Nam I-H, Han Y-S, Ahn JS, Rhee S-K et al. Sphingorhabdus pulchriflava sp. nov., isolated from a river. Int J Syst Evol Microbiol 2019; 69:2644–2650 [View Article][PubMed][PubMed]
    [Google Scholar]
  13. Park J-M, Park S, Jung Y-T, Kim H, Lee J-S et al. Sphingorhabdus arenilitoris sp. nov., isolated from a coastal sand, and reclassification of Sphingopyxis rigui as Sphingorhabdus rigui comb. nov. and Sphingopyxis wooponensis as Sphingorhabdus wooponensis comb. nov. Int J Syst Evol Microbiol 2014; 64:2551–2557 [View Article][PubMed][PubMed]
    [Google Scholar]
  14. Liu Y, Du J, Zhang J, Lai Q, Shao Z et al. Sphingorhabdus soli sp. nov., isolated from Arctic soil. Int J Syst Evol Microbiol 2020; 35: [View Article]
    [Google Scholar]
  15. Baek M-G, Shin S-K, Yi H. Sphingorhabdus lutea sp. nov., isolated from sea water. Int J Syst Evol Microbiol 2019; 69:3593–3598 [View Article][PubMed][PubMed]
    [Google Scholar]
  16. Baik KS, Choe HN, Park SC, Hwang YM, Kim EM et al. Sphingopyxis rigui sp. nov. and Sphingopyxis wooponensis sp. nov., isolated from wetland freshwater, and emended description of the genus Sphingopyxis . Int J Syst Evol Microbiol 2013; 63:1297–1303 [View Article][PubMed][PubMed]
    [Google Scholar]
  17. Subhash Y, Sasikala C, Ramana CV. Sphingopyxis contaminans sp. nov., isolated from a contaminated Petri dish. Int J Syst Evol Microbiol 2014; 64:2238–2243 [View Article][PubMed][PubMed]
    [Google Scholar]
  18. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed][PubMed]
    [Google Scholar]
  19. Song J, Yang S-J, Cho J-C. "Bring to lab" of 19 novel species among 60 isolates retrieved from a freshwater pond. J Microbiol Biotechnol 2007; 17:168–175[PubMed][PubMed]
    [Google Scholar]
  20. Lee J-Y, Kim J-K, Owen JS, Choi Y, Shin K et al. Variation in carbon and nitrogen stable isotopes in POM and zooplankton in a deep reservoir and relationship to hydrological characteristics. J Freshw Ecol 2013; 28:47–62 [View Article]
    [Google Scholar]
  21. Cho J-C, Giovannoni SJ. Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria. Appl Environ Microbiol 2004; 70:432–440 [View Article][PubMed][PubMed]
    [Google Scholar]
  22. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed][PubMed]
    [Google Scholar]
  23. Westram R, Bader K, Prüsse E, Kumar Y, Meier H et al. ARB: a software environment for sequence data. In FJd Bruijn. editor Handbook of Molecular Microbial Ecology I: Metagenomics and Complementary Approaches Hoboken, NJ, USA: John Wiley & Sons; 2011 pp 399–406
    [Google Scholar]
  24. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed][PubMed]
    [Google Scholar]
  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed][PubMed]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed][PubMed]
    [Google Scholar]
  27. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971; 20:406–416 [View Article]
    [Google Scholar]
  28. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed][PubMed]
    [Google Scholar]
  29. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed][PubMed]
    [Google Scholar]
  30. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed][PubMed]
    [Google Scholar]
  31. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article][PubMed][PubMed]
    [Google Scholar]
  32. Na S-I, Kim YO, Yoon S-H, Ha S-M, Baek I et al. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article][PubMed][PubMed]
    [Google Scholar]
  33. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26:1641–1650 [View Article][PubMed][PubMed]
    [Google Scholar]
  34. Lee I, Ouk Kim Y, Park S-C, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed][PubMed]
    [Google Scholar]
  35. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed][PubMed]
    [Google Scholar]
  36. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed][PubMed]
    [Google Scholar]
  37. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 2016; 428:726–731 [View Article][PubMed][PubMed]
    [Google Scholar]
  38. Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY et al. Cdd: conserved domains and protein three-dimensional structure. Nucleic Acids Res 2013; 41:D348–D352 [View Article][PubMed][PubMed]
    [Google Scholar]
  39. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed][PubMed]
    [Google Scholar]
  40. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article][PubMed][PubMed]
    [Google Scholar]
  41. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed][PubMed]
    [Google Scholar]
  42. Tindall BJ, Sikorski J, Smibert RA, Krieg NR et al. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society of Microbiology; 2007 pp 330–393
    [Google Scholar]
  43. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: DE: MIDI Inc; 1990
    [Google Scholar]
  44. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  45. Collins MD, Jones D. A note on the separation of natural mixtures of bacterial ubiquinones using reverse‐phase partition thin‐layer chromatography and high performance liquid chromatography. J Appl Microbiol 1981; 51:129–134
    [Google Scholar]
  46. Collins M, Shah H, Minnikin D. A note on the separation of natural mixtures of bacterial menaquinones using reverse phase thin‐layer chromatography. J Appl Microbiol 1980; 48:277–282
    [Google Scholar]
  47. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  48. Pedrol N, Tiburcio AF. Polyamines determination by TLC and HPLC Handbook of Plant Ecophysiology Techniques: Springer; 2001 pp 335–363
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004155
Loading
/content/journal/ijsem/10.1099/ijsem.0.004155
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error