1887

Abstract

A Gram-stain-positive, non-flagellated, non-gliding, coccoid bacterial strain, designated JLT9, was isolated from the shallow-sea hydrothermal system off Kueishantao Island, Taiwan, ROC. Strain JLT9 was aerobic, chemoheterotrophic and grew optimally at 35 °C, at pH 6.0 and in the presence of 2.5 % (w/v) NaCl. Strain JLT9 exhibited highest 16S rRNA gene sequence similarity to DSM 15273 (98.83 %). Phylogenetic trees based on 16S rRNA gene sequences revealed that strain JLT9 belonged to the genus , clustering with JC1078, MCCC 1A05965, GP-T3-3 and CAU9536. The digital DNA–DNA genome hybridization values between strain JLT9 and the closest related strain DSM 15273 was 34.30 %. The DNA G+C content was 72.43 mol%. The dominant fatty acids were identified as iso-C (41.4 %) and iso-C (24.7 %). The polar lipids of strain JLT9 comprised diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, three unidentified glycolipid and an unidentified phospholipid. The predominant isoprenoid quinone was MK-8 (H). The cell wall contained ornithine and serine, and no diaminopimelic acid. On the basis of phylogenetic data and several distinct phenotypic characteristics, strain JLT9 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is JLT9 (=CGMCC 1.15779=JCM 31502).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004145
2020-04-24
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3139.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004145&mimeType=html&fmt=ahah

References

  1. Yi H, Schumann P, Sohn K, Chun J. Serinicoccus marinus gen. nov., sp. nov., a novel actinomycete with L-ornithine and L-serine in the peptidoglycan. Int J Syst Evol Microbiol 2004; 54:1585–1589 [View Article][PubMed][PubMed]
    [Google Scholar]
  2. Xiao J, Luo Y, Xie S, Xu J. Serinicoccus profundi sp. nov., an actinomycete isolated from deep-sea sediment, and emended description of the genus Serinicoccus . Int J Syst Evol Microbiol 2011; 61:16–19 [View Article][PubMed][PubMed]
    [Google Scholar]
  3. Traiwan J, Park M-H, Kim W. Serinicoccus chungangensis sp. nov., isolated from tidal flat sediment, and emended description of the genus Serinicoccus . Int J Syst Evol Microbiol 2011; 61:1299–1303 [View Article][PubMed][PubMed]
    [Google Scholar]
  4. Lee DW, Yoo Y, Lee H, Kwon B-O, Khim JS et al. Serinicoccus sediminis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2019; 69:1998–2003 [View Article][PubMed][PubMed]
    [Google Scholar]
  5. Yang X-W, Zhang G-Y, Ying J-X, Yang B, Zhou X-F et al. Isolation, characterization, and bioactivity evaluation of 3-((6-methylpyrazin-2-yl)methyl)-1H-indole, a New alkaloid from a deep-sea-derived actinomycete Serinicoccus profundi sp. nov. Mar Drugs 2013; 11:33–39 [View Article]
    [Google Scholar]
  6. Trzoss L, Fukuda T, Costa-Lotufo LV, Jimenez P, La Clair JJ et al. Seriniquinone, a selective anticancer agent, induces cell death by autophagocytosis, targeting the cancer-protective protein Dermcidin. Proc Natl Acad Sci USA 2014; 111:14687–14692 [View Article][PubMed][PubMed]
    [Google Scholar]
  7. Han Y, Lin D, Yu L, Chen X, Sun J et al. Complete genome sequence of Serinicoccus sp. JLT9, an actinomycete isolated from the shallow-sea hydrothermal system. Mar Genomics 2017; 32:19–21 [View Article][PubMed][PubMed]
    [Google Scholar]
  8. Dong XZ, Cai MY. Determination of biochemical properties. Manual for the Systematic Identification of General Bacteria Beijing: Scientific Press; 2001 pp 353–412
    [Google Scholar]
  9. Yurkov VV, Krieger S, Stackebrandt E, Beatty JT. Citromicrobium bathyomarinum, a novel aerobic bacterium isolated from deep-sea hydrothermal vent plume waters that contains photosynthetic pigment-protein complexes. J Bacteriol 1999; 181:4517–4525 [View Article][PubMed][PubMed]
    [Google Scholar]
  10. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 1994 pp 611–654
    [Google Scholar]
  11. Rüger H-J, Krambeck H-J. Evaluation of the Biolog substrate metabolism system for classification of marine bacteria. Syst Appl Microbiol 1994; 17:281–288 [View Article]
    [Google Scholar]
  12. Fraser SL, Jorgensen JH. Reappraisal of the antimicrobial susceptibilities of Chryseobacterium and Flavobacterium species and methods for reliable susceptibility testing. Antimicrob Agents Chemother 1997; 41:2738–2741 [View Article][PubMed][PubMed]
    [Google Scholar]
  13. Embley TM. The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett Appl Microbiol 1991; 13:171–174 [View Article][PubMed][PubMed]
    [Google Scholar]
  14. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed][PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed][PubMed]
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed][PubMed]
    [Google Scholar]
  17. Fitch WM, Margoliash E. Construction of phylogenetic trees. Science 1967; 155:279–284 [View Article][PubMed][PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed][PubMed]
    [Google Scholar]
  19. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed][PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed][PubMed]
    [Google Scholar]
  22. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  23. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  24. Kroppenstedt RM. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series vol. 20) New York: Academic Press; 1985 pp 173–199
    [Google Scholar]
  25. Collins MD, Goodfellow M, Minnikin DE. Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa. J Gen Microbiol 1980; 118:29–37 [View Article][PubMed][PubMed]
    [Google Scholar]
  26. Kates M. Techniques of Lipidology, 2nd ed. Amsterdam: Elsevier; 1986 pp 106–107
    [Google Scholar]
  27. LH X, WJ L, Liu ZH, Jiang CL. Actinomycete Systematic: Principle, Methods and Practice Beijing: Scientific Press; 2007 pp 54–66
    [Google Scholar]
  28. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  29. Lee I, Chalita M, Ha S-M, Na S-I, Yoon S-H et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017; 67:2053–2057 [View Article][PubMed][PubMed]
    [Google Scholar]
  30. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed][PubMed]
    [Google Scholar]
  31. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Brenner DJ, Grimont PAD, Trüper HG et al. Report of the ad hoc Committee on reconciliation of approaches to bacterial Systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004145
Loading
/content/journal/ijsem/10.1099/ijsem.0.004145
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error