1887

Abstract

A Gram-stain-negative, non-motile, fine rod or short filament shaped, jacinth pigmented bacterium, designated strain WDS2C27, was isolated from a marine solar saltern in Wendeng, Weihai, PR China (37°31′5″ N, 122°1′47″ E). Growth of WDS2C27 occurred at 20–42 °C (optimum 37 °C) and pH 6.5–8.5 (optimal pH 7.0–8.0). Optimal growth occurred in modified marine broth containing 6 % (w/v) NaCl. The major polar lipids in WDS2C27 were phosphatidylethanolamine, two unidentified aminolipids and one unidentified lipid. The major respiratory quinone of WDS2C27 was MK-6. The dominant fatty acids were iso-C and anteisoC. The DNA G+C content was 35.0 mol%. The nucleotide sequence of the 16S rRNA gene indicated that the most closely related strain was X15M-8 (92.0 % over 1452 bp). WDS2C27 showed 60.7 % average amino acid identity, 55.6 % percentage of conserved proteins, 75.0 % average nucleotide identity and 13.1 % digital DNA–DNA hybridization identity with the type species of the genus , ATCC 700755. The phenotypic and genotypic properties and phylogenetic inference indicated that WDS2C27 could be assigned to a novel species within a novel genus, for which the name gen. nov., sp. nov. is proposed. Strain WDS2C27 (=MCCC 1H00133=KCTC 52044) is the type strain.

Funding
This study was supported by the:
  • Zong-Jun Du , the Science and Technology Basic Resources Investigation Program of China , (Award 2017FY100300)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004143
2020-05-26
2020-10-20
Loading full text...

Full text loading...

References

  1. Bowman JP, McCammon SA, Lewis T, Skerratt JH, Brown JL et al. Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology 1998; 144:1601–1609 [CrossRef][PubMed]
    [Google Scholar]
  2. Donachie SP, Bowman JP, Alam M. Psychroflexus tropicus sp. nov., an obligately halophilic Cytophaga–Flavobacterium–Bacteroides group bacterium from an Hawaiian hypersaline lake. Int J Syst Evol Microbiol 2004; 54:935–940 [CrossRef][PubMed]
    [Google Scholar]
  3. Chen Y-G, Cui X-L, Wang Y-X, Tang S-K, Zhang Y-Q et al. Psychroflexus sediminis sp. nov., a mesophilic bacterium isolated from salt lake sediment in China. Int J Syst Evol Microbiol 2009; 59:569–573 [CrossRef][PubMed]
    [Google Scholar]
  4. Yoon J-H, Kang S-J, Jung Y-T, Oh T-K. Psychroflexus salinarum sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 2009; 59:2404–2407 [CrossRef][PubMed]
    [Google Scholar]
  5. Jin S, Xia J, Dunlap CA, Rooney AP, Du Z-J. Psychroflexus saliphilus sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 2016; 66:5124–5128 [CrossRef][PubMed]
    [Google Scholar]
  6. Seiler H, Bleicher A, Busse H-J, Hüfner J, Scherer S. Psychroflexus halocasei sp. nov., isolated from a microbial consortium on a cheese. Int J Syst Evol Microbiol 2012; 62:1850–1856 [CrossRef][PubMed]
    [Google Scholar]
  7. Chun J, Kang JY, Jahng KY. Psychroflexus salarius sp. nov., isolated from Gomso salt pan. Int J Syst Evol Microbiol 2014; 64:3467–3472 [CrossRef][PubMed]
    [Google Scholar]
  8. Zhong Z-P, Liu Y, Wang F, Zhou Y-G, Liu H-C et al. Psychroflexus salis sp. nov. and Psychroflexus planctonicus sp. nov., isolated from a salt lake. Int J Syst Evol Microbiol 2016; 66:125–131 [CrossRef][PubMed]
    [Google Scholar]
  9. Park S, Jung Y-T, Park J-M, Kim S-G, Yoon J-H. Psychroflexus aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:2146–2151 [CrossRef][PubMed]
    [Google Scholar]
  10. Zhang H, Hosoi-Tanabe S, Nagata S, Ban S, Imura S. Psychroflexus lacisalsi sp. nov., a moderate halophilic bacterium isolated from a hypersaline lake (Hunazoko-Ike) in Antarctica. J Microbiol 2010; 48:160–164 [CrossRef][PubMed]
    [Google Scholar]
  11. Mu D-S, Liang Q-Y, Wang X-M, Lu D-C, Shi M-J et al. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. Microbiome 2018; 6:230 [CrossRef][PubMed]
    [Google Scholar]
  12. Dong X, Cai M. Determination of biochemical characteristics. In: Dong XZ and Cai MY (editors). Manual for the Systematic Identification of General Bacteria Beijing: Science Press; 2011
    [Google Scholar]
  13. Reichenbach H. The Order Cytophagales New York: Springer; 2006
    [Google Scholar]
  14. Biebl H, Pukall R, Lünsdorf H, Schulz S, Allgaier M et al. Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense . Int J Syst Evol Microbiol 2007; 57:1095–1107 [CrossRef][PubMed]
    [Google Scholar]
  15. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [CrossRef]
    [Google Scholar]
  16. Komagata K, Susuki K. Lipid and cell-wall systematics in bacterial systematics. Methods in Microbiology 1987; 19:161–207
    [Google Scholar]
  17. Jin T, Komagata K. Determination of DNA base composition by reversed‐phase high‐performance liquid chromatography. FEMS Microbiology Letters 1984; 25:125–128
    [Google Scholar]
  18. Li R, Yu C, Li Y, Lam T-W, Yiu S-M et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 2009; 25:1966–1967 [CrossRef][PubMed]
    [Google Scholar]
  19. Luke S. Two fast tree-creation algorithms for genetic programming. IEEE Trans. Evol. Computat. 2000; 4:274–283 [CrossRef]
    [Google Scholar]
  20. Letunic I, Bork P, Ivica L, Peer B. Interactive tree of life (iTOL) V4: recent updates and new developments. Nucleic Acids Res 2019; 47:W256–W259 [CrossRef][PubMed]
    [Google Scholar]
  21. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [CrossRef][PubMed]
    [Google Scholar]
  22. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [CrossRef][PubMed]
    [Google Scholar]
  23. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res 2004; 32:277D–280 [CrossRef][PubMed]
    [Google Scholar]
  24. Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 2011; 39:W339–W346 [CrossRef][PubMed]
    [Google Scholar]
  25. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [CrossRef]
    [Google Scholar]
  26. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [CrossRef][PubMed]
    [Google Scholar]
  27. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  28. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [CrossRef][PubMed]
    [Google Scholar]
  29. Liu Q-Q, Wang Y, Li J, Du Z-J, Chen G-J. Saccharicrinis carchari sp. nov., isolated from a shark, and emended descriptions of the genus Saccharicrinis and Saccharicrinis fermentans . Int J Syst Evol Microbiol 2014; 64:2204–2209 [CrossRef][PubMed]
    [Google Scholar]
  30. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [CrossRef][PubMed]
    [Google Scholar]
  31. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  32. Saitou N, Nei M, Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  33. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  34. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [CrossRef]
    [Google Scholar]
  35. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  36. Trappen SV, Vandecandelaere I, Mergaert J, Swings J. Gillisia limnaea gen. nov., sp. nov., a new member of the family Flavobacteriaceae isolated from a microbial mat in lake Fryxell, Antarctica; 2004; 54445–448
  37. Roh SW, Lee M, Lee H-W, Yim KJ, Heo SY et al. Gillisia marina sp. nov., from seashore sand, and emended description of the genus Gillisia . Int J Syst Evol Microbiol 2013; 63:3640–3645 [CrossRef][PubMed]
    [Google Scholar]
  38. Lim J-M, Jeon CO, Lee SS, Park D-J, Xu L-H et al. Reclassification of Salegentibacter catena Ying et al. 2007 as Salinimicrobium catena gen. nov., comb. nov. and description of Salinimicrobium xinjiangense sp. nov., a halophilic bacterium isolated from Xinjiang province in China. Int J Syst Evol Microbiol 2008; 58:438–442 [CrossRef][PubMed]
    [Google Scholar]
  39. Zhang H, Chang Y-Q, Zheng W-S, Chen G-J, Du Z-J. Salinimicrobium flavum sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2017; 67:40834088 [CrossRef][PubMed]
    [Google Scholar]
  40. Nedashkovskaya OI, Kim SB, Han SK, Rhee M-S, Lysenko AM et al. Algibacter lectus gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from green algae. Int J Syst Evol Microbiol 2004; 54:1257–1261 [CrossRef][PubMed]
    [Google Scholar]
  41. Wong S-K, Park S, Lee J-S, Lee KC, Ogura Y et al. Algibacter aquaticus sp. nov., a slightly alkaliphilic marine Flavobacterium isolated from coastal surface water. Int J Syst Evol Microbiol 2017; 67:21992204 [CrossRef][PubMed]
    [Google Scholar]
  42. Nedashkovskaya OI, Kim SB, Lysenko AM, Frolova GM, Mikhailov VV et al. Bizionia paragorgiae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from the soft coral Paragorgia arborea . Int J Syst Evol Microbiol 2005; 55:375–378 [CrossRef][PubMed]
    [Google Scholar]
  43. Kim Y-O, Park I-S, Park S, Nam B-H, Kim D-G et al. Bizionia berychis sp. nov., isolated from intestinal tract of a splendid alfonsino (Beryx splendens). Int J Syst Evol Microbiol 2018; 68:12271232 [CrossRef][PubMed]
    [Google Scholar]
  44. Nedashkovskaya OI, Vancanneyt M, Christiaens L, Kalinovskaya NI, Mikhailov VV et al. Aquimarina intermedia sp. nov., reclassification of Stanierella latercula (Lewin 1969) as Aquimarina latercula comb. nov. and Gaetbulimicrobium brevivitae Yoon et al. 2006 as Aquimarina brevivitae comb. nov. and emended description of the genus Aquimarina . Int J Syst Evol Microbiol 2006; 56:2037–2041 [CrossRef][PubMed]
    [Google Scholar]
  45. Lee JK, Cha I-T, Kim M, Choi B-geun, Song HS, Lee JK, Roh SW et al. Aquimarina versatilis sp. nov., isolated from seashore sand, and emended description of the genus Aquimarina . Int J Syst Evol Microbiol 2017; 67:411–416 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004143
Loading
/content/journal/ijsem/10.1099/ijsem.0.004143
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error