subsp. subsp. nov., isolated from rice grain silage Free

Abstract

Two Gram-stain-positive, rod-shaped, non-motile, non-spore-forming, catalase-negative bacteria, designated strains SG162 and NK01, were isolated from Japanese rice grain silage and total mixed ration silage, respectively. They were initially identified as based on the 16S rRNA gene sequence similarities. However, the two strains were separated into a distinct clade from DSM 20057 (=JCM 1115) through whole-genome sequence-based characterization, forming an infraspecific subgroup together with strains CD034 and S42, whose genomic sequences were available in the public sequence database. Strains within the subgroup shared 99.4–99.7 % average nucleotide identity (ANI) and 97.5–99.0 % digital DNA–DNA hybridization (dDDH) with each other, albeit 96.9–97.0 % ANI and 76.0–76.6 % dDDH against DSM 20057. Strains SG162 and NK01 could utilize more substrates as sole carbon sources than DSM 20057, potentially owing to the abundance of genes involved in carbon metabolism, especially the Entner–Doudoroff pathway. The inability of γ-aminobutyric acid (GABA) production was evidenced by the lack of glutamate decarboxylase and glutamate/GABA antiporter genes in the new subgroup strains. Strain SG162 grew at 10–45 °C (optimum, 30 °C), pH 3.5–8.0, and 0–8 % (w/v) NaCl. Its genomic DNA G+C content was 44.1 mol%. The predominant fatty acids were C, C cyclo ω8, and summed feature 8. On the basis of the polyphasic characterization findings, strains SG162 and NK01 represent a novel subspecies of , for which the name subsp. subsp. nov. is proposed. The type strain is SG162 (=JCM 32599=DSM 107969), and strains CD034 and S42 are also transferred to subsp. .

Funding
This study was supported by the:
  • NIG JOINT (Award 2017)
    • Principle Award Recipient: Masanori Tohno
  • NIG JOINT (Award 2016)
    • Principle Award Recipient: Masanori Tohno
  • Japan Society for the Promotion of Science (Award 17K19248)
    • Principle Award Recipient: Yasukazu Nakamura
  • Japan Society for the Promotion of Science (Award 16H06279)
    • Principle Award Recipient: Yasukazu Nakamura
  • Japan Society for the Promotion of Science (Award 15H05897)
    • Principle Award Recipient: Masanori Arita
  • NARO Gender Equality Program
    • Principle Award Recipient: Masanori Tohno
  • NARO Gender Equality Program
    • Principle Award Recipient: Hisami Kobayashi
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004138
2020-04-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3111.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004138&mimeType=html&fmt=ahah

References

  1. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article][PubMed]
    [Google Scholar]
  2. Hammes WP, Hertel C. Genus I. Lactobacillus Beijerinck 1901, 212AL. In Vos P, Garrity G, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology 3, 2nd ed. New York: Springer; 2009 pp 465–511
    [Google Scholar]
  3. Henneberg W. Zur Kenntniss Der Milchsäure-bakterien Der Brenneriemaische, Der Milch, des Bieres, Der Presshefe, Der Melasse, Der Sauerkohls, Der sauren Gurken und des Sauerteigs, sowie einige Bemerkungen über die Milchsäurebakterien des menschlichen Magens. Zeitschrift fur Spiritusindustrie 1903; 26:329–332
    [Google Scholar]
  4. Kõll P, Mändar R, Smidt I, Hütt P, Truusalu K et al. Screening and evaluation of human intestinal lactobacilli for the development of novel gastrointestinal probiotics. Curr Microbiol 2010; 61:560–566 [View Article][PubMed]
    [Google Scholar]
  5. Du Toit M, Dicks LMT, Holzapfel WH. Identification of heterofermentative lactobacilli isolated from pig faeces by numerical analysis of total soluble cell protein patterns and RAPD-PCR. Lett Appl Microbiol 2003; 37:12–16 [View Article][PubMed]
    [Google Scholar]
  6. Briggs M. The classification of lactobacilli by means of physiological tests. J Gen Microbiol 1953; 9:234–248 [View Article][PubMed]
    [Google Scholar]
  7. Edmondson JE, JENSEN RG, Merilan CP, SMITH KL. The characteristics of some rumen lactobacilli. J Bacteriol 1956; 72:253–258 [View Article][PubMed]
    [Google Scholar]
  8. Liu S, Skinner-Nemec KA, Leathers TD. Lactobacillus buchneri strain NRRL B-30929 converts a concentrated mixture of xylose and glucose into ethanol and other products. J Ind Microbiol Biotechnol 2008; 35:75–81 [View Article][PubMed]
    [Google Scholar]
  9. Zeng XQ, Pan DD, Guo YX. The probiotic properties of Lactobacillus buchneri P2. J Appl Microbiol 2010; 108:2059–2066 [View Article][PubMed]
    [Google Scholar]
  10. Daughtry KV, Johanningsmeier SD, Sanozky-Dawes R, Klaenhammer TR, Barrangou R. Phenotypic and genotypic diversity of Lactobacillus buchneri strains isolated from spoiled, fermented cucumber. Int J Food Microbiol 2018; 280:46–56 [View Article][PubMed]
    [Google Scholar]
  11. Yansanjav A, Svec P, Sedlácek I, Hollerová I, Nemec M. Ribotyping of lactobacilli isolated from spoiled beer. FEMS Microbiol Lett 2003; 229:141–144 [View Article][PubMed]
    [Google Scholar]
  12. Wang C, Han H, Gu X, Yu Z, Nishino N. A survey of fermentation products and bacterial communities in corn silage produced in a bunker silo in China. Anim Sci J 2014; 85:32–36 [View Article][PubMed]
    [Google Scholar]
  13. Santos AO, Ávila CLS, Pinto JC, Carvalho BF, Dias DR et al. Fermentative profile and bacterial diversity of corn silages inoculated with new tropical lactic acid bacteria. J Appl Microbiol 2016; 120:266–279 [View Article][PubMed]
    [Google Scholar]
  14. Heinl S, Grabherr R. Systems biology of robustness and flexibility: Lactobacillus buchneri-A show case. J Biotechnol 2017; 257:61–69 [View Article][PubMed]
    [Google Scholar]
  15. Heinl S, Wibberg D, Eikmeyer F, Szczepanowski R, Blom J et al. Insights into the completely annotated genome of Lactobacillus buchneri CD034, a strain isolated from stable grass silage. J Biotechnol 2012; 161:153–166 [View Article][PubMed]
    [Google Scholar]
  16. Oude Elferink SJ, Krooneman J, Gottschal JC, Spoelstra SF, Faber F et al. Anaerobic conversion of lactic acid to acetic acid and 1, 2-propanediol by Lactobacillus buchneri . Appl Environ Microbiol 2001; 67:125–132 [View Article][PubMed]
    [Google Scholar]
  17. Nishino N, Yoshida M, Shiota H, Sakaguchi E. Accumulation of 1,2-propanediol and enhancement of aerobic stability in whole crop maize silage inoculated with Lactobacillus buchneri . J Appl Microbiol 2003; 94:800–807 [View Article][PubMed]
    [Google Scholar]
  18. Mari LJ, Schmidt RJ, Nussio LG, Hallada CM, Kung L. Short communication: An evaluation of the effectiveness of Lactobacillus buchneri 40788 to alter fermentation and improve the aerobic stability of corn silage in farm silos. J Dairy Sci 2009; 92:1174–1176 [View Article][PubMed]
    [Google Scholar]
  19. Muck RE, Nadeau EMG, McAllister TA, Contreras-Govea FE, Santos MC et al. Silage review: recent advances and future uses of silage additives. J Dairy Sci 2018; 101:3980–4000 [View Article][PubMed]
    [Google Scholar]
  20. Miyaji M, Inoue H, Kawaide T, Tohno M, Kamiya Y et al. Effect of different methods for conserving rice grain on in situ ruminal degradation and in vivo nutrient digestion and rumen fermentation in steers. Anim Sci J 2018; 89:972–978 [View Article][PubMed]
    [Google Scholar]
  21. Yildirim Z, Avşar YK, Yildirim M. Factors affecting the adsorption of buchnericin LB, a bacteriocin produced by Lactobacillus buchneri . Microbiol Res 2002; 157:103–107 [View Article][PubMed]
    [Google Scholar]
  22. Tohno M, Kitahara M, Irisawa T, Inoue H, Uegaki R et al. Lactobacillus oryzae sp. nov., isolated from fermented rice grain (Oryza sativa L. subsp. japonica). Int J Syst Evol Microbiol 2013; 63:2957–2962 [View Article][PubMed]
    [Google Scholar]
  23. Tohno M, Kitahara M, Inoue H, Uegaki R, Irisawa T et al. Weissella oryzae sp. nov., isolated from fermented rice grains. Int J Syst Evol Microbiol 2013; 63:1417–1420 [View Article]
    [Google Scholar]
  24. Tohno M, Kobayashi H, Tajima K, Uegaki R. Strain-dependent effects of inoculation of Lactobacillus plantarum subsp. plantarum on fermentation quality of paddy rice (Oryza sativa L. subsp. japonica) silage. FEMS Microbiol Lett 2012; 337:112–119 [View Article][PubMed]
    [Google Scholar]
  25. Nishino N, Hattori H, Wada H, Touno E. Biogenic amine production in grass, maize and total mixed ration silages inoculated with Lactobacillus casei or Lactobacillus buchneri . J Appl Microbiol 2007; 103:325–332 [View Article][PubMed]
    [Google Scholar]
  26. Tohno M, Kitahara M, Irisawa T, Ohmori H, Masuda T et al. Lactobacillus mixtipabuli sp. nov. isolated from total mixed ration silage. Int J Syst Evol Microbiol 2015; 65:1981–1985 [View Article][PubMed]
    [Google Scholar]
  27. Tohno M, Tanizawa Y, Kojima Y, Sakamoto M, Nakamura Y et al. Lactobacillus salitolerans sp. nov., a novel lactic acid bacterium isolated from spent mushroom substrates. Int J Syst Evol Microbiol 2019; 69:964–969 [View Article][PubMed]
    [Google Scholar]
  28. Kajitani R, Toshimoto K, Noguchi H, Toyoda A, Ogura Y et al. Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome Res 2014; 24:1384–1395 [View Article][PubMed]
    [Google Scholar]
  29. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34:i884–i890 [View Article][PubMed]
    [Google Scholar]
  30. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article][PubMed]
    [Google Scholar]
  31. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  33. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2–19 [View Article][PubMed]
    [Google Scholar]
  35. Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 2018; 34:1037–1039 [View Article][PubMed]
    [Google Scholar]
  36. Cosentino S, Iwasaki W. SonicParanoid: fast, accurate and easy orthology inference. Bioinformatics 2019; 35:149–151 [View Article][PubMed]
    [Google Scholar]
  37. Edgar RC. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article]
    [Google Scholar]
  38. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007; 56:564–577 [View Article][PubMed]
    [Google Scholar]
  39. Kück P, Longo GC. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front Zool 2014; 11:81–88 [View Article][PubMed]
    [Google Scholar]
  40. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  41. Tohno M, Kitahara M, Inoue H, Uegaki R, Irisawa T et al. Weissella oryzae sp. nov., isolated from fermented rice grains. Int J Syst Evol Microbiol 2013; 63:1417–1420 [View Article][PubMed]
    [Google Scholar]
  42. Liu S, Leathers TD, Copeland A, Chertkov O, Goodwin L et al. Complete genome sequence of Lactobacillus buchneri NRRL B-30929, a novel strain from a commercial ethanol plant. J Bacteriol 2011; 193:4019–4020 [View Article][PubMed]
    [Google Scholar]
  43. Nomura M, Kimoto H, Someya Y, Suzuki I. Novel characteristic for distinguishing Lactococcus lactis subsp. lactis from subsp. cremoris . Int J Syst Bacteriol 1999; 49 Pt 1:163–166 [View Article][PubMed]
    [Google Scholar]
  44. Sakamoto M, Suzuki M, Umeda M, Ishikawa I, Benno Y. Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 2002; 52:841–849 [View Article][PubMed]
    [Google Scholar]
  45. Komagata K, Suzuki K-I. Lipid and cell-wall analysis in bacterial Systematics. Methods in Microbiology 1988; 19:161–207
    [Google Scholar]
  46. Cho YR, Chang JY, Chang HC. Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J Microbiol Biotechnol 2007; 17:104–109[PubMed]
    [Google Scholar]
  47. Zhao A, Hu X, Pan L, Wang X. Isolation and characterization of a gamma-aminobutyric acid producing strain Lactobacillus buchneri WPZ001 that could efficiently utilize xylose and corncob hydrolysate. Appl Microbiol Biotechnol 2015; 99:3191–3200 [View Article][PubMed]
    [Google Scholar]
  48. Lee Y-S, Park I-H, Yoo J-S, Kim H-S, Chung S-Y et al. Gene expression and characterization of 2-keto-3-deoxy-gluconate kinase, a key enzyme in the modified Entner-Doudoroff pathway of Serratia marcescens KCTC 2172. Electronic Journal of Biotechnology 2009; 12:14
    [Google Scholar]
  49. Sumner SS, Speckhard MW, Somers EB, Taylor SL. Isolation of histamine-producing Lactobacillus buchneri from Swiss cheese implicated in a food poisoning outbreak. Appl Environ Microbiol 1985; 50:1094–1096 [View Article][PubMed]
    [Google Scholar]
  50. O'Sullivan DJ, Fallico V, O'Sullivan O, McSweeney PLH, Sheehan JJ et al. High-Throughput DNA sequencing to survey bacterial histidine and tyrosine decarboxylases in raw milk cheeses. BMC Microbiol 2015; 15:266–12 [View Article][PubMed]
    [Google Scholar]
  51. Martín MC, Fernández M, Linares DM, Alvarez MA. Sequencing, characterization and transcriptional analysis of the histidine decarboxylase operon of Lactobacillus buchneri . Microbiology 2005; 151:1219–1228 [View Article][PubMed]
    [Google Scholar]
  52. Diaz M, Del Rio B, Sanchez-Llana E, Ladero V, Redruello B et al. Histamine-producing Lactobacillus parabuchneri strains isolated from grated cheese can form biofilms on stainless steel. Food Microbiol 2016; 59:85–91 [View Article][PubMed]
    [Google Scholar]
  53. Rogosa M, Franklin JG, Perry KD. Correlation of the vitamin requirements with cultural and biochemical characters of Lactobacillus spp. J Gen Microbiol 1961; 25:473–482 [View Article][PubMed]
    [Google Scholar]
  54. Franklin JG, Sharpe ME. Physiological characteristics and vitamin requirements of lactobacilli isolated from milk and cheese. J Gen Microbiol 1964; 34:143–151 [View Article][PubMed]
    [Google Scholar]
  55. Lapage SP, Sneath P, Lessel EF, Skerman V, Seeliger H et al. International Code of Nomenclature of bacteria: bacteriological Code, 1990 revision.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004138
Loading
/content/journal/ijsem/10.1099/ijsem.0.004138
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed