1887

Abstract

A novel actinobacterium, designated strain CFH S0261, was isolated from a sediment sample of the Yellow River. The taxonomic position of the strain was investigated by using a polyphasic approach. Cells of strain CFH S0261 were Gram-reaction-positive, aerobic, non-motile. Growth occurs at 15–37 °C, pH 6.0–8.0 and with 0–9.0 % (w/v) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain CFH S0261 was a member of the genus . The 16S rRNA gene sequence similarity indicated that strain CFH S0261 is most closely related to the type strains of LC11 (98.95 %), LC2 (98.81 %) and IMSNU 22139 (98.73 %). The whole-genome of CFH S0261 showed a G+C content of 69.5 mol%. The ANI values and DDH values between CFH S0261 and the other species of the genus were found to be low (ANIb <90.61 % and DDH <53.40 %). The cell wall diamino acid in the peptidoglycan of strain CFH S0261 was -diaminopimelic acid and the whole-cell hydrolysate comprised arabinose, galactose, glucose, rhamnose and ribose. The predominant menaquinone was MK-9(H). The major cellular fatty acids were C, iso-C and iso-C. The polar lipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannosides and four unidentified glycolipids. On the basis of phenotypic, genotypic and phylogenetic data, strain CFH S0261 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CFH S0261 (=KCTC 39515 =CCTCC AA 2014028).

Funding
This study was supported by the:
  • Doctor Scientific Research Fund of Xinxiang Medical University (Award XYBSKYZZ201625)
    • Principle Award Recipient: Hong Ming
  • Henan Province University youth researcher support project (Award 2017GGJS106)
    • Principle Award Recipient: Hong Ming
  • Innovation Scientists and Technicians Troop Construction Projects of Henan Province (Award CXTD2016043)
    • Principle Award Recipient: Guo-Xing Nie
  • Natural Science Foundation of China (Award 3150004)
    • Principle Award Recipient: Hong Ming
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.004134
2020-04-06
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/70/5/3084.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.004134&mimeType=html&fmt=ahah

References

  1. Lechevalier MP, Prauser H, Labeda DP, Ruan JS. Two new genera of Nocardioform Actinomycetes: Amycolata gen. nov. and Amycolatopsis gen. nov. Int J Syst Bacteriol 1986; 36:29–37 [View Article]
    [Google Scholar]
  2. Embley MT, Smida J, Stackebrandt E. The phylogeny of mycolate-less wall chemotype IV actinomycetes and description of Pseudonocardiaceae fam. nov. Syst Appl Microbiol 1988; 11:44–52 [View Article]
    [Google Scholar]
  3. Warwick S, Bowen T, McVeigh H, Embley TM, Martin Embley T. A phylogenetic analysis of the family Pseudonocardiaceae and the genera Actinokineospora and Saccharothrix with 16S rRNA sequences and a proposal to combine the genera Amycolata and Pseudonocardia in an emended genus Pseudonocardia . Int J Syst Bacteriol 1994; 44:293–299 [View Article][PubMed]
    [Google Scholar]
  4. Labeda DP, Goodfellow M, Chun J, Zhi X-Y, Li W-J. Reassessment of the systematics of the suborder Pseudonocardineae: transfer of the genera within the family Actinosynnemataceae Labeda and Kroppenstedt 2000 emend. Zhi et al. 2009 into an emended family Pseudonocardiaceae Embley et al. 1989 emend. Zhi et al. 2009. Int J Syst Evol Microbiol 2011; 61:1259–1264 [View Article][PubMed]
    [Google Scholar]
  5. Labeda DP, Goodfellow M. Family I. Pseudonocardiaceae Embley, Smida and Stackebrandt 1989, 205VP emend. Labeda, Goodfellow, Chun, Zhi and Li 2010. In Goodfellow M, Kampfer P, Busse HJ, Trujillo ME, Suzuki K. (editors) Bergey’s Manual of Systematic Bacteriology New York: Springer; 2012 pp 1302–1445
    [Google Scholar]
  6. Nie G-X, Ming H, Li S, Zhou E-M, Cheng J et al. Amycolatopsis dongchuanensis sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 2012; 62:2650–2656 [View Article]
    [Google Scholar]
  7. Everest GJ, le Roes-Hill M, Omorogie C, Cheung S-K, Cook AE et al. Amycolatopsis umgeniensis sp. nov., isolated from soil from the banks of the Umgeni river in South Africa. Antonie van Leeuwenhoek 2013; 103:673–681 [View Article][PubMed]
    [Google Scholar]
  8. Oyuntsetseg B, Cho S-H, Jeon SJ, Lee HB, Shin K-S, Kim SB et al. Amycolatopsis acidiphila sp. nov., a moderately acidophilic species isolated from coal mine soil. Int J Syst Evol Microbiol 2017; 67:3387–3392 [View Article][PubMed]
    [Google Scholar]
  9. Thawai C. Amycolatopsis rhizosphaerae sp. nov., isolated from rice rhizosphere soil. Int J Syst Evol Microbiol 2018; 68:1546–1551 [View Article][PubMed]
    [Google Scholar]
  10. Duangmal K, Mingma R, Pathom-Aree W, Thamchaipenet A, Inahashi Y et al. Amycolatopsis samaneae sp. nov., isolated from roots of Samanea saman (Jacq.) Merr. Int J Syst Evol Microbiol 2011; 61:951–955 [View Article][PubMed]
    [Google Scholar]
  11. Miao Q, Qin S, Bian G-K, Yuan B, Xing K et al. Amycolatopsis endophytica sp. nov., a novel endophytic actinomycete isolated from oil-seed plant Jatropha curcas L. Antonie van Leeuwenhoek 2011; 100:333–339 [View Article][PubMed]
    [Google Scholar]
  12. Xing K, Liu W, Zhang Y-J, Bian G-K, Zhang W-D et al. Amycolatopsis jiangsuensis sp. nov., a novel endophytic actinomycete isolated from a coastal plant in Jiangsu, China. Antonie Van Leeuwenhoek 2013; 103:433–439 [View Article][PubMed]
    [Google Scholar]
  13. Bian J, Li Y, Wang J, Song F-H, Liu M et al. Amycolatopsis marina sp. nov., an actinomycete isolated from an ocean sediment. Int J Syst Evol Microbiol 2009; 59:477–481 [View Article][PubMed]
    [Google Scholar]
  14. Tang S-K, Wang Y, Guan T-W, Lee J-C, Kim C-J et al. Amycolatopsis halophila sp. nov., a halophilic actinomycete isolated from a salt lake. Int J Syst Evol Microbiol 2010; 60:1073–1078 [View Article][PubMed]
    [Google Scholar]
  15. Labeda DP, Donahue JM, Williams NM, Sells SF, Henton MM. Amycolatopsis kentuckyensis sp. nov., Amycolatopsis lexingtonensis sp. nov. and Amycolatopsis pretoriensis sp. nov., isolated from equine placentas. Int J Syst Evol Microbiol 2003; 53:1601–1605 [View Article][PubMed]
    [Google Scholar]
  16. Huang Y, Paściak M, Liu Z, Xie Q, Gamian A. Amycolatopsis palatopharyngis sp. nov., a potentially pathogenic actinomycete isolated from a human clinical source. Int J Syst Evol Microbiol 2004; 54:359–363 [View Article][PubMed]
    [Google Scholar]
  17. Albarracín VH, Alonso-Vega P, Trujillo ME, Amoroso MJ, Abate CM. Amycolatopsis tucumanensis sp. nov., a copper-resistant actinobacterium isolated from polluted sediments. Int J Syst Evol Microbiol 2010; 60:397–401 [View Article][PubMed]
    [Google Scholar]
  18. Everest GJ, Meyers PR. Evaluation of the antibiotic biosynthetic potential of the genus Amycolatopsis and description of Amycolatopsis circi sp. nov., Amycolatopsis equina sp. nov. and Amycolatopsis hippodromi sp. nov. J Appl Microbiol 2011; 111:300–311 [View Article][PubMed]
    [Google Scholar]
  19. Zhao W, Zhong Y, Yuan H, Wang J, Zheng H et al. Complete genome sequence of the rifamycin SV-producing Amycolatopsis mediterranei U32 revealed its genetic characteristics in phylogeny and metabolism. Cell Res 2010; 20:1096–1108 [View Article][PubMed]
    [Google Scholar]
  20. Ming H, Yin Y-R, Li S, Nie G-X, Yu T-T et al. Thermus caliditerrae sp. nov., a novel thermophilic species isolated from a geothermal area. Int J Syst Evol Microbiol 2014; 64:650–656 [View Article]
    [Google Scholar]
  21. Li W-J, Xu P, Schumann P, Zhang Y-Q, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  22. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically United database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article]
    [Google Scholar]
  23. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  24. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  26. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  27. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  28. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  29. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  31. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 2012; 1:18 [View Article][PubMed]
    [Google Scholar]
  32. Freel KC, Sarilar V, Neuvéglise C, Devillers H, Friedrich A et al. Genome sequence of the yeast Cyberlindnera fabianii (Hansenula fabianii) . Genome Announc 2014; 2:e00638-14 07 08 2014 [View Article][PubMed]
    [Google Scholar]
  33. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 2007; 23:673–679 [View Article][PubMed][PubMed]
    [Google Scholar]
  34. Ming H, Yin Y-R, Li S, Nie G-X, Yu T-T et al. Thermus caliditerrae sp. nov., a novel thermophilic species isolated from a geothermal area. Int J Syst Evol Microbiol 2014; 64:650–656 [View Article][PubMed]
    [Google Scholar]
  35. Cerny G. Studies on the aminopeptidase test for the distinction of gram-negative from gram-positive bacteria. Appl Microbiol Biotechnol 1978; 5:113–122 [View Article]
    [Google Scholar]
  36. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  37. Waksman SA. The Actinomycetes. A Summary of Current Knowledge New York: Ronald Press; 1967
    [Google Scholar]
  38. Atlas RM. Handbook of Microbiological Media, Edited by L. C. Parks. Boca Raton, FL: CRC Press; 1993
    [Google Scholar]
  39. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  40. Leifson E. Atlas of bacterial flagellation. Q Rev Biol 1960; 242:
    [Google Scholar]
  41. Nie G-X, Ming H, Li S, Zhou E-M, Cheng J et al. Amycolatopsis dongchuanensis sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 2012; 62:2650–2656 [View Article][PubMed]
    [Google Scholar]
  42. Williams ST, Goodfellow M, Alderson G. Genus Streptomyces Waksman and Henrici 1943, 339AL . In Williams ST, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology 4 Baltimore: Williams & Wilkins, Baltimore; 1989 pp 2452–2492
    [Google Scholar]
  43. Groth I, Rodríguez C, Schütze B, Schmitz P, Leistner E et al. Five novel Kitasatospora species from soil: Kitasatospora arboriphila sp. nov., K. gansuensis sp. nov., K. nipponensis sp. nov., K. paranensis sp. nov. and K. terrestris sp. nov. Int J Syst Evol Microbiol 2004; 54:2121–2129 [View Article][PubMed]
    [Google Scholar]
  44. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article][PubMed]
    [Google Scholar]
  45. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [View Article]
    [Google Scholar]
  46. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231 [View Article][PubMed]
    [Google Scholar]
  47. Uchida K, Aida KO. An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol 1984; 30:131–134 [View Article]
    [Google Scholar]
  48. Minnikin DE, Alshamaony L, Goodfellow M. Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol 1975; 88:200–204 [View Article][PubMed]
    [Google Scholar]
  49. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: Microbial ID, Inc; 1990
    [Google Scholar]
  50. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  51. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  52. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  53. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  54. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.004134
Loading
/content/journal/ijsem/10.1099/ijsem.0.004134
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error